PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability analysis of multi-site damage with failure dependency of the turbine based on flow-thermal-solid coupling analysis and the Monte Carlo validated simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The harsh environmental loads may lead to strength failure in the turbine in an aero-engine. To accurately assess the strength reliability of the turbine under multiple loads, the stress distributions of 41 danger sites of a turbine under thermal, centrifugal, and pneumatic loads were determined by the flow-thermal-solid coupling analysis using ANSYS. Second, based on the flow-thermal-solid coupling analysis and response surface method, the probabilistic analysis model of stress at the danger site was established. And the probabilistic distribution of stress was determined by sampling and hypothesis testing. Finally, the reliability model of the turbine with multi-site damage and failure dependency was established, by which a reliability of 0.99802 was calculated. And the actual reliability of the turbine was 0.99626 determined by the Monte Carlo simulations, which verified the model in precision. The results indicated that the reliability model has a high efficiency and higher precision than the traditional reliability model with failure independence.
Rocznik
Strony
art. no. 168771
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical, Shenyang Institute of Engineering, Shenyang 110136, China
Bibliografia
  • 1. Al-Garni A, Abdelrahman W, Abdallah A. ANN-based failure modeling of classes of aircraft engine components using radial basis functions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21(2): 311–317. http://dx.doi.org/10.17531/ein.2019.2.16.
  • 2. Amirkhani S, Chaibakhsh A, Ghaffari A. Nonlinear robust fault diagnosis of power plant gas turbine using Monte Carlo-based adaptive threshold approach. ISA transactions 2020; 100: 171-184. https://doi.org/10.1016/j.isatra.2019.11.035.
  • 3. Balachandra S P, Mishra R K, Prithvi S S, et al. Finite Element Approach for Failure Analysis of a Gas Turbine Blade. Journal of Failure Analysis and Prevention 2018; 18: 1210-1215. https://doi.org/10.1007/s11668-018-0514-5.
  • 4. Behbahaninia A, Banifateme M, Azmayesh M H, et al. Markov and monte carlo simulation of waste-to-energy power plants considering variable fuel analysis and failure rates. Journal of Energy Resources Technology 2022; 144(6): 062101. https://doi.org/10.1115/1.4051760.
  • 5. Dhamodaran M, Jegadeesan S, Praveen K R. Computation of the fluid flow and the temperature field by finite element modeling. Cluster Computing 2019; 22: 14505-14511. https://doi.org/10.1007/s10586-018-2330-9.
  • 6. Dong X W, Li W K, Zhu C Y, et al. Dynamic reliability design of multicomponent structure with improved weighted regression distributed collaborative surrogate model method. Advances in Materials Science and Engineering 2018; 2018: 3832783. https://doi.org/10.1155/2018/3832783.
  • 7. Esakki M S, Prakash R V, Mishra R K, et al. Thermo-mechanical fatigue life assessment of a gas turbine rotor through reliability approach. Journal of Failure Analysis and Prevention 2018; 18: 1361-1368. https://doi.org/10.1007/s11668-018-0531-4.
  • 8. Fan J, Liao H, Wang H, et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis. Structural and Multidisciplinary Optimization 2018; 57: 373-392. https://doi.org/10.1007/s00158-017-1760-y.
  • 9. Fei C W, Choy Y S, Hu D Y, et al. Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance. Nonlinear Dynamics 2016; 86: 205-223. https://doi.org/10.1007/s11071-016-2883-1.
  • 10. Gao H F, Bai G C, Gao Y, et al. Reliability analysis for aero-engine turbine disc fatigue life with multiple random variables based on distributed collaborative response surface method. Journal of Central South University 2015; 22(12): 4693-4701, http://dx.doi.org/10.1007/s11771-015-3020-x.
  • 11. Gao H F, Wang A, Zio E, et al. Fatigue strength reliability assessment of turbo-fan blades by Kriging-based distributed collaborative response surface method. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21(3): 530–538, http://dx.doi.org/10.17531/ein.2019.3.20.
  • 12. Gao P, Xie L, Hu W, et al. Dynamic fuzzy reliability analysis of multistate systems based on universal generating function. Mathematical Problems in Engineering 2018; 2018: 1-8, https://doi.org/10.1155/2018/6524629.
  • 13. Guan X, He J, Rasselkorde E M, et al. Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system. Journal of Nondestructive Evaluation; 2014, 33: 51-61. https://doi.org/10.1007/s10921-013-0202-z.
  • 14. Heinze K, Meyer M, Scharfenstein J, et al. A parametric model for probabilistic analysis of turbine blades considering real geometric effects. CEAS Aeronautical Journal; 2014, 5: 41-51. https://doi.org/10.1007/s13272-013-0088-6.
  • 15. Hossain M A, Cottingham J R, Stewart C M. An Extrema Approach to Probabilistic Creep Modeling in Finite Element Analysis. Journal of Engineering for Gas Turbines and Power 2022; 144(1): 1-10, https://doi.org/10.1115/1.4052260.
  • 16. Khalesi J, Modaresahmadi S, Atefi G. SEM Gamma prime observation in a thermal and stress analysis of a first-stage Rene’80H gas turbine blade: numerical and experimental investigation. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 2019; 43: 613-626. https://doi.org/10.1007/s40997-018-0235-0.
  • 17. Kolagar A M, Tabrizi N, Cheraghzadeh M, et al. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Studies in Engineering Failure Analysis 2017; 8: 61-68, https://doi.org/10.1016/j.csefa.2017.04.002.
  • 18. Kumar R, Ranjan V, Kumar B, et al. Finite element modelling and analysis of the burst margin of a gas turbine disc using an area weighted mean hoop stress method. Engineering Failure Analysis 2018; 90: 425-433. https://doi.org/10.1016/j.engfailanal.2017.12.014.
  • 19. Li L, Wan H, Gao W, et al. Reliability based multidisciplinary design optimization of cooling turbine blade considering uncertainty data statistics. Structural and multidisciplinary optimization 2019; 59(2): 659-673. https://doi.org/10.1007/s00158-018-2081-5.
  • 20. Liu L L, Hu D Y, Li D, et al. Effect of Grain Size on Low Cycle Fatigue Life in Compressor Disc Superalloy GH4169 at 600 °C. Procedia Structural Integrity 2017; 7: 174-181, https://doi.org/10.1016/j.prostr.2017.11.075.
  • 21. Liu Y, Yuan Q, Zhu G, et al. Transient analysis and design improvement of a gas turbine rotor based on thermal-mechanical method. Shock and Vibration 2018; 2018: 102950. https://doi.org/10.1155/2018/1029520.
  • 22. Lu C, Fei C W, Feng Y W, et al. Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework. Engineering Failure Analysis 2021; 125: 105398, https://doi.org/10.1016/j.engfailanal.2021.105398.
  • 23. Lu C, Feng Y W, Fei C W, et al. Probabilistic analysis method of turbine blisk with multi-failure modes by two-way fluid-thermal-solid coupling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(16): 2873-2886, https://doi.org/10.1177/0954406217723673.
  • 24. Ma X B, Wang Z H, Guan T Y, et al. Aircraft reliability assessment for an individual mission based on recordable flight parameters. Quality and Reliability Engineering International 2018; 34(8): 1605-1614, https://doi.org/10.1002/qre.2345.
  • 25. Mishra R K, Thomas J, Srinivasan K, et al. Failure analysis of an un-cooled turbine blade in an aero gas turbine engine. Engineering Failure Analysis 2017; 79: 836-844, https://doi.org/10.1016/j.engfailanal.2017.05.042.
  • 26. Mojtaba R, Abbas B, Mohammad M, at al. Corrosion-Fatigue Failure of Gas-Turbine Blades in an Oil and Gas Production Plant. Materials 2020; 13(4): 900-907, https://doi.org/10.3390/ma13040900.
  • 27. Nowak G, Rusin A. Shape and operation optimisation of a supercritical steam turbine rotor. Energy conversion and management 2013; 74: 417-425. https://doi.org/10.1016/j.enconman.2013.06.037.
  • 28. Polat Ö, Eyüboğlu O H, Gül Ö. Monte Carlo simulation of electric vehicle loads respect to return home from work and impacts to the low voltage side of distribution network. Electrical Engineering 2021; 103(1): 439-445, https://doi.org/10.1007/s00202-020-01093-5.
  • 29. Qian W, Yin X, Xie L. Reliability modeling and assessment of component with multiple weak sites under complex loading. Mathematical Problems in Engineering 2014; 2014: 1-9, https://doi.org/10.1155/2014/583803.
  • 30. Ren J G, Zhao B F, Xie L Y, et al. Fatigue Reliability Analysis of a Compressor Disk Based on Probability Cumulative Damage Criterion. Materials 2020; 13(9): 1-15, https://doi.org/10.3390/ma13092182.
  • 31. Ruiz-Muñoz G A. Method to analyse multiple site damage fatigue before and after crack coalescence. Engineering Fracture Mechanics 2018; 188: 416-430, https://doi.org/10.1016/j.engfracmech.2017.09.011.
  • 32. Sakaris C S, Sakellariou J S, Fassois S D. Multi-site damage precise localization via the random vibration functional model based method: Formulation & concept validation. Mechanical Systems and Signal Processing 2021; 160: 107880, https://doi.org/10.1016/j.ymssp.2021.107880.
  • 33. Sawiński D, Ziókowski P, Badur J. Thermal failure of a second rotor stage in heavy duty gas turbine. Engineering Failure Analysis 2020; 115: 104672, https://doi.org/10.1016/j.engfailanal.2020.104672.
  • 34. Song L K, Bai G C, Fei C W. Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression. International Journal of Fatigue 2019; 119: 204-219. https://doi.org/10.1016/j.ijfatigue.2018.10.005.
  • 35. Taamneh Y. Thermal analysis of gas turbine disk integrated with rotating heat pipes. Case studies in thermal engineering 2017; 10: 335-342. https://doi.org/10.1016/j.csite.2017.09.002.
  • 36. Tiassou K, Kanoun K, Kaâniche M, et al. Aircraft operational reliability—A model-based approach and a case study. Reliability Engineering & System Safety 2013; 120: 163-176, https://doi.org/10.1016/J.RESS.2013.07.008.
  • 37. Tomevenya K M, Liu S J. Probabilistic fatigue-creep life reliability assessment of aircraft turbine disk. Journal of Mechanical Science and Technology 2018; 32: 5127-5132. https://doi.org/10.1007/s12206-018-1010-2.
  • 38. Vahid-Pakdel M J, Mohammadi-Ivatloo B. Probabilistic assessment of wind turbine impact on distribution networks using linearized power flow formulation. Electric Power Systems Research 2018; 162: 109-117. https://doi.org/10.1016/j.epsr.2018.05.001.
  • 39. Wang R Z, Zhang X C, Gong J G, et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept. International Journal of Fatigue 2017; 97: 114-123. https://doi.org/10.1016/j.ijfatigue.2016.11.021.
  • 40. Wang R, Liu X, Hu D, et al. Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification. Aerospace Science and Technology 2017; 70: 300-309. https://doi.org/10.1016/j.ast.2017.08.011.
  • 41. Wei Y, Bai G, Wang B, et al. Reliability Analysis on structures based on a modified iterative response surface method. Mathematical Problems in Engineering 2018; 2018: 1-14, https://doi.org/10.1155/2018/8794160.
  • 42. Xie L Y, Wang Z, Lin W Q. System fatigue reliability modeling under stochastic cyclic load. Int. J. of Reliability and Safety 2008; 2(4): 357-367, https://doi.org/10.1504/IJRS.2008.022081.
  • 43. Xie L Y, Zhou J Y, Hao C Z. System-level load-strength interference based reliability modeling of k-out-of-n system. Rel. Eng. & Sys. Safety 2003; 84 (3): 311-317, https://doi.org/10.1016/j.ress.2003.12.003.
  • 44. Xie L, Wu N, Qian W. Time domain series system definition and gear set reliability modeling. Reliability Engineering & System Safety 2016; 155: 97-104, https://doi.org/10.1016/j.ress.2016.06.009.
  • 45. Xie LY, Zhou J Y, Wang Y Y, et al. Load- Strength Order Statistics Interference Models for System Reliability Evaluation. International Journal of Performability Engineering 2005; 1(1): 23-36,
  • 46. Zhang C Y, Wei J S, Wang Z, et al. Creep-Based Reliability Evaluation of Turbine Blade-Tip Clearance with Novel Neural Network Regression. Materials 2019; 12(21): 3552-3573, https://doi.org/10.3390/ma12213552.
  • 47. Zhang S, Lv R N, Si S B, et al. Reliability Analysis of Systems with Common Cause Failure Based on Stress-Strength Interference Model. Journal of Shanghai Jiaotong University (Science) 2018; 23(5): 707-710, http://doi.org/10.1007/s12204-018-1968-z.
  • 48. Zhao B F, Xie L Y, Zhang Y, et al. An improved dynamic load-strength interference model for the reliability analysis of aero-engine rotor blade system. Proceedings of the Institution of Mechanical Engineers, Journal of Aerospace Engineering 2021; 235(11): 1355-1373, https://doi.org/10.1177/0954410020972898.
  • 49. Zhao Y J, Chen L, Li H, et al. Structural dynamic reliability estimation with advanced extremum Kriging method. IOP Conference Series Materials Science and Engineering 2021; 1043(5): 052030, https:// doi.org/10.1088/1757-899X/1043/5/052030 .
  • 50. Zhu S P, Huang H Z, Smith R, et al. Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys. Probabilistic Engineering Mechanics 2013; 34: 114-122. https://doi.org/10.1016/j.probengmech.2013.08.004.
  • 51. Zhu S P, Liu Q, Zhou J, et al. Fatigue reliability assessment of turbine discs under multi‐source uncertainties. Fatigue & Fracture of Engineering Materials & Structures 2018; 41(6): 1291-1305, https://doi.org/10.1111/ffe.12772.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ddd4dc3-81f6-4622-8f0f-417ff42e01b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.