PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zintegrowana symulacja ruchu drogowego i emisji zanieczyszczeń. II. Formy integracji modeli ruchu i emisji

Identyfikatory
Warianty tytułu
EN
Integrated simulation of road traffic and pollution emission. II. Forms of integration of traffic and emission models
Języki publikacji
PL
Abstrakty
PL
W nawiązaniu do zamieszczonego w oddzielnej publikacji [1] przeglądu i jednolitej klasyfikacji popularnych modeli ruchu drogowego i modeli emisji zanieczyszczeń, opracowano ogólne zasady wymagane do przeprowadzenia pełnej integracji modeli ruchu i emisji. Wyodrębniono cztery podstawowe klasy powiązań pomiędzy modelami składowymi, a następnie określono wymagane postaci interfejsów. W ramach poszczególnych klas modeli zintegrowanych wymieniono szereg konkretnych rozwiązań stosowanych w praktyce.
EN
The paper is based on the preceding paper [1], which reviews popular models of both road traffic and pollution emission, and proposes uniform classifications for both types of models. This follow-up paper discusses general principles needed for providing full integration of traffic and emission models. Four fundamental combination classes between component models were identified, and the required forms of interfaces were defined. Within particular classes of integrated models, a number of concrete solutions applied in practice were listed.
Czasopismo
Rocznik
Tom
Strony
4621--4629, CD2
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu, 61-138 Poznań, ul. Piotrowo 3
  • Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu, 61-138 Poznań, ul. Piotrowo 3
Bibliografia
  • 1. Maciejewski M., Maciejewski M., Zintegrowana symulacja ruchu drogowego i emisji zanieczyszczeń, I. Jednolita klasyfikacja modeli ruchu i emisji (do publikacji w Logistyka 3/2015).
  • 2. Anya A. R., Rouphail N. M., Frey H. Ch., Schroeder B., Application of AIMSUN Micro Simulation Model in Estimating Emissions on Signalized Arterial Corridors. 93rd TRB Annual Meeting 2014, paper 14-1481, s. 1 - 26.
  • 3. Zegeye S. K., De Schutter B., Hellendoorn J., Breunesse E.A., Model-based traffic control for the reduction of fuel consumption, emissions, and travel time. Proceedings of mobil. TUM 2009 - International Scientific Conference on Mobility and Transport, Munich 2009, s. 1 - 11.
  • 4. Zegeye S. K., De Schutter B., Hellendoorn J., Breunesse E. A., Hegyi A., Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes. Transportation Research Part C: Emerging Technologies 31 (2013), 158 - 171.
  • 5. Panis L., Broekx S., Liu R., Modeling instantaneous traffic emission and the influence of traffic speed limits. Science of the Total Environment 371 (2006), s. 270 - 285.
  • 6. Lin J., Chiu Y., Vallamsundar S., Bai S. (2011), Integration of MOVES and dynamic traffic assignment models for fine-grained transportation and air quality analyses. IEEE Forum on Integrated and Sustainable Transportation System (FISTS), IEEE, 2011, s. 176 - 181.
  • 7. Benz T., Model Types, Interfaces and Their Use. Amitran Final Conference, Helsinki 2014, s. 1 - 13.
  • 8. Xie Y., Chowdhury M., Bhavsar P., Zhou Y, An integrated tool for modeling the impact of alternative fueled vehicles on traffic emissions: A case study of Greenville, South Carolina. Transportation Research Board 90th Annual Meeting, Washington DC 2011, paper 11-3880, s. 1 - 14.
  • 9. Madireddy M., De Coensel B., Can A., Degraeuwe B., Beusen B., De Vlieger I., Botteldooren D., Assessment of the impact of speed limit reduction and traffic signal coordination on vehicle emissions using an integrated approach. Transportation research Part D 16 (2011), 504 - 508.
  • 10. Krajzewicz D., Behrisch M., Wagner P., Hausberger S., Krumnow M., Second Generation of Pollutant Emission Models for SUMO. SUMO2014 - Second SUMO User Conference, 2014, s. 1 - 13.
  • 11. Alsabaan M., Naik K., Khalifa T., Nayak A., Applying Vehicular Networks for Reduced Vehicle Fuel Consumption and CO2 Emissions. Intelligent Transportation Systems (ed. Abdel-Rahim A.), InTech, 2012, s. 1 - 20.
  • 12. Byun J., TRANSIMS and MOVES Connection. Northern Transportation and Air Quality Summit, Philadelphia, 2012, 1 - 21.
  • 13. Lee G., You S.I., Ritchie S. G., Saphores J.-D., Sangkapichai M., Jayakrishnan R., Environmental impacts of a major freight corridor. Transportation Research Record 2123 (2009), s. 119 - 128.
  • 14. Stevanovic A., Stevanovic J., Zhang K., Batterman S., Optimizing traffic control to reduce fuel consumption and vehicular emissions. integrated approach with VISSIM, CMEM, and VISGAOST. Transportation Research Record 2128 (2009), s. 105 - 113.
  • 15. Robles D., Optimal signal control with multiple objectives in traffic mobility and environmental impacts. Thesis, Stockholm, 2012, s. 1 - 88.
  • 16. Sider T.M.N., Alam A., Farrell W., Hatzopoulou M., Eluru N., Evaluating vehicular emissions with an integrated mesoscopic and microscopic traffic simulation. Canadian Journal of Civil Engineering 41 (2014), 856 - 868.
  • 17. Den Braven K. R., Abdel-Rahim A., Henrickson K., Battles A., Modeling Vehicle Fuel Consumption and Emissions at Signalized Intersection Approaches: Integrating Field-Collected Data Into Microscopic Simulation. National Institute for Advanced Transportation Technology University of Idaho, KLK721, 2012, s. 1 - 59.
  • 18. Hirschmann K., Zallinger M., Fellendorf M., Hausberger S., A new method to calculate emissions with simulated traffic conditions. 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Funchal, 2010, 33 - 38.
  • 19. Elkafoury A., Negm A. M., Bady M. F., Aly M. H., VISSIM Based Microscopic Traffic Emission Prediction Model. Advances in Environmental Science and Energy Planning, 2012 International Conference on Energy and Environmental Protection (ICEEP 2012), 2012, Hohhot, s. 206 - 214.
  • 20. Liu R., Tate J., Microsimulation modeling of intelligent speed adaptation system. European Transport Conference, Proceedings of European Transport Conference 2000, Seminar J, 89 - 100, Cambridge 2000.
  • 21. Lei H., Estimate Travel Time Reliability and Emissions For Active Traffic and Demand Management. Dissertation, University of Utah, 2013, s. 1 - 176.
  • 22. Bartin B., Mudigonda S., Ozbay K., Impact of electronic toll collection on air pollution levels: Estimation using microscopic simulation model of large-scale transportation network. Transportation Research Record 2011 (2007), s. 68 - 77.
  • 23. Madireddy M., De Coensel B., De Vlieger I., Botteldooren D., Beusen B., Degraeuwe B., Lenaers G., Can A., Eijk A., Proceedings of the 18th International Symposium on Transport and Air Pollution (TAP) , Dübendorf 2010, s. 256 - 10.
  • 24. Ahn K., Rakha H., The effects of route choice decisions on vehicle energy consumption and emissions, Transportation Research Part D 13 (2008), s. 151 - 167.
  • 25. Rakha H., Ahn K., Trani A., (2004). Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions, Transportation Research Part D 9 (2004), s. 49 - 74.
  • 26. Zegeye S. K., De Schutter B., Hellendoorn H., Breunesse E., Model-based traffic control for balanced reduction of fuel consumption, emissions, and travel time. 12th IFAC Symposium on Transportation Systems, Redondo Beach, 2009, s. 1 – 6.
  • 27. Zegeye S.K., De Schutter B., Hellendoorn J., Breunesse E.A., Integrated macroscopic traffic flow and emission model based on METANET and VTmicro. Delft University of Technology, Delft Center for Systems and Control, Technical report 09-017, s. 1 - 5.
  • 28. Zhang L., Yin Y., Chen S., (2013). Robust signal timing optimization with environmental concerns. Transportation Research Part C 29 (2013), s. 55 - 71.
  • 29. Lin S., De Schutter B., Zegeye S. K., Hellendoorn H., Xi Y., Integrated urban traffic control for the reduction of travel delays and emissions. 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Funchal, 2010, 677 - 682.
  • 30. Bai S., Chiu Y.-C., Niemeier D., (2007). A comparative analysis of using tripbased versus link-based traffic data for regional mobile source emissions estimation. Atmospheric Environment 41 (2007), s. 7512 - 7523.
  • 31. Gan Q., Sun J., Jin W., Saphores J.-D., Incorporating Vehicular Emissions into an Efficient Mesoscopic Traffic Model, An Application to the Alameda Corridor, CA. University of California Transportation Center, UCTC-FR-2011-02, 2011, s. 1 - 19.
  • 32. Klunder G.A., Stelwagen U., Taale, H., Integrating a macro emission model with a macroscopic traffic model. European Transport Conference 2013, Association for European Transport, 2013, s. 1 - 11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dd5d3f9-f96c-42ff-8eac-ab4122b1379b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.