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Birth defects affect 1 to 3 percent of the population and are mostly detected in pregnant
women through double, triple, and quadruple testing. Ultrasonography helps to discover
and define such anomalies in fetuses. Ultrasound pictures of nuchal translucency (NT)
are routinely used to detect genetic disorders in fetuses. The NT area lacks identifiable
local behaviors and detection algorithms are required to classify the fetal head. On the
other hand, explicit identification of other body parts comes at a higher cost in terms
of annotations, implementation, and analysis. In circumstances of ambiguous head place-
ment or non-standard head-NT relationships, it may potentially cause cascading errors.
In this research work, a linear contour size filter is used to decrease noise from the image,
and then the picture is scaled. Then, a novel hybrid maxpool matrix histogram analy-
sis (HMMHA) is proposed to enhance the initiation and progression. The training and
assessment were conducted using a dataset of 33 ultrasound pictures. Extensive testing
shows that the direct method reliably identifies and measures NT. The suggested model
may assist doctors in making decisions about pregnancies with fetal growth restriction,
particularly for patients who have nuchal translucency or congenital anomalies and do
not require induced labor due to these abnormalities. The performance of the proposed
technique is analyzed in terms of error rate, sensitivity, Matthews correlation coefficient
(MCC), accuracy, precision, recall, and F1-score. The error rate of the proposed model is
28.21% and it is found to be better when compared with the conventional approaches. Fi-
nally, the error prediction is compared with the existing models obtained from the medical
dataset of pregnant women to identify fetal abnormality positions.
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1. Introduction

Down syndrome (DS), commonly known as trisomy 21, is a serious chromo-
somal disease that affects one out of every 700 newborn babies. Typically, each
chromosome has two copies, but DS is a hereditary disorder in which chromosome
21 has three copies, all or part of a third copy is an extra one. It is a heredi-
tary disorder caused by an extra 21st chromosome. Mild to severe developmental
problems emerge from the disorder, affecting both cognitive capacity and physi-
cal growth. Individuals with DS typically have distinctive physical traits, health
difficulties, and cognitive development that vary. DS may be identified before
or after a baby is born via several screenings and tests. Certain morphological
characteristics of DS fetuses differ from euploid fetuses, and for DS these char-
acteristics are the facial fronto-maxillary (FMF) angle, the lack of a nasal bone,
and greater nuchal translucency [1]. In the early trimester of pregnancy, trained
operators use ultrasound images to assess the thickness of the NT. The manual
screening method is time-consuming and prone to errors. As a result, it is critical
to provide an accurate and automated NT measuring method. The thickness of
an object is measured using the NT method; first, the area is measured and then
the thickness is calculated. The dark and bright contrast may exist in several
areas in the image, making automatic area recognition a difficult challenge. Both
medical specialists and current identification algorithms depend on the location
of several other bodily regions with distinct patterns [2]. For nuchal translucency
detection an ultrasound scan is used. Figure 1 illustrates the fluid-filled zone un-
der the fetus’s neck skin, which sonographically appears as an anechogenic area
(i.e., a black zone in grayscale pictures) between two echogenic areas (i.e., bright
zones) [3]. The best time to test NT thickness is between the eleventh and twelfth
weeks when the NT achieves its maximum thickness, and after that, it gradually
goes away.

Normal Abnormal

Ultrasound
transducer

Uterus
Fetus

Fig. 1. Nuchal translucency detection by ultrasound scan.

The current work presents the following benefits: 1) easy-to-use internet and
mobile applications that support a machine learning approach to predict fetal
care; 2) data from pregnant women admitted to a diagnostics facility is used to
teach the major techniques to determine fetal health based on patient’s medical
data and other information including family history. Following that, the pre-
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ceding investigation is discussed, methods and technical information about the
developed framework are provided, various aspects and weights in the data source
are analyzed, results from volunteer patients are analyzed, and lastly, the study
is brought to a conclusion. The main contribution of the paper is to detect the
NT abnormality using hybrid maxpool matrix histogram analysis (HMMHA).
The nuchal translucency test determines the thickness of the nuchal fold. This
is the tissue at the back of a baby’s neck in the womb. This thickness is used to
determine the infant’s likelihood of DS and other genetic abnormalities.

2. Related works

NT measurements and comprehensive follow-up information were retrieved
from the project’s prospective database for fetal down screening [4]. Due to pre-
existing medical conditions, pregnancies with genetic or structural abnormalities
were excluded from the study. The selected pregnancies were classified into the
increased nuchal translucency (INT) (greater than 95th%) group and the nor-
mal (less than 95th%) group. In [5], The researchers examined the usefulness of
chromosomal microarray analysis (CMA) and whole exome sequencing (WES)
in fetuses with increased NT. A total of 374 singleton pregnancies with gesta-
tional ages ranging from 11 to 13 + 6 weeks were studied. WES is a procedure
carried out in a lab to identify the nucleotide sequence, particularly of the exonic
portions of a person’s genome and associated sequences, which make up about
1 percent of the whole DNA sequence.

In [6], convolutional neural learning techniques were studied and compared.
Biometric characteristics extracted and measured via segmentation methods
were used in neural network identification of fetal abnormalities. In [7], machine
learning was used to create and evaluate an algorithm for maternal postpartum
readmissions due to complications of hypertensive disorders of pregnancy. In [8],
the authors’ goal was to accurately predict fetal weight at different stages of
pregnancy without an ultrasound screening. For obstetricians, machine learn-
ing can provide exact predictions, and pregnant women may benefit from an
effective and efficient self-monitoring method in addition to normal treatment
options. To support their findings, the authors used data from 4212 intrapartum
observations.

A variety of AI-powered methods for predicting fetal stage categories were
presented in [9]. Multi-layer architecture of a sub-adaptive neuro fuzzy infer-
ence system (MLA-ANFIS) architectures are implemented on a continuous car-
diotocography (CTG) dataset using multiple input characteristics, neural net-
works (NN), deep stacked sparse auto-encoders (DSSAEs), and deep-ANFIS
algorithms. In [10], prenatal analyzes of fetal anomalies in 10 414 fetuses and
neonates were compared with all postnatal diagnoses of congenital abnormali-
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ties between 2006 and 2013. For fetuses with increased NT (≥ 3.5 mm) who re-
ceived standard prenatal testing, genome sequencing (GS) (> 30-fold) was used
in a retrospective study [11].

The goal of the research in [12] was to conduct a population-based, individ-
ual record linkage study to establish the best way to define an enlarged nuchal
translucency for detecting atypical chromosomal abnormalities. In [13], the au-
thors studied 52 400 pregnant patients who came in for a normal ultrasound scan
between 35- and 36-weeks’ gestation. All pregnancies had a previous scan at 18–
24 weeks, and 47 214 also had a scan at 11–13 weeks. Pregnancies that were
found in a normal delivery or death have been included, but those with con-
genital anomalies were eliminated. The nature and occurrence of such anomalies
were established, and anomalies were categorized per the impacted main organ.
The objective of [14] was to focus on the outcome and medical value of trio-based
rapid WES in pregnancies of fetuses with a variety of congenital anomalies that
were diagnosed by ultrasound scans.

In [15], 55 fetuses were studied to learn more about them. Two or more
independent significant fetal malformations, hydrops fetalis, or a significant fe-
tal abnormality and a first-degree relation with a similar condition have all been
used as criteria for inclusion. To identify cardiac subsets and structural anomalies
in fetal ultrasound recordings, the authors suggested a novel supervised object
detection with normal data only (SONO) architecture focusing on a convolu-
tional neural network (CNN) [16]. The detection probability was measured and
described using a barcode-like chronology and an anomaly score for every frame
was obtained. In [17], machine learning-based quick and accurate automatic test-
ing played a vital role in assessing bone fragments on computed tomography
(CT) scanning. Despite the requirement in drug safety assessment, animal fetus
micro-CT scan study is uncommon due to the time-consuming data collection
and interpretation.

3. Proposed methodology

The proposed methodology employs ensemble machine learning approaches to
classify ultrasound pictures of fetal abnormality, as shown in Fig. 2. The overall
strategy includes: a) ultrasound fetal images, b) preprocessing, and c) image
augmentation, followed by augmentation output and performance analysis for
validation.

3.1. Fetal image dataset

The fetal images were manually collected from Boston Children’s Hospital.
About 33 ultrasound fetal images were taken and analyzed for abnormalities.
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Fig. 2. The schematic of the proposed flow diagram.

3.2. Preprocessing

A linear contour size filter is an iterative technique for recovering the intensi-
ties in ultrasonic images. All picture and frame data were rescaled, and a clipped
x and y rectangle comprising the majority of the field of view but omitting the
vendor logo and ultrasonic control indications was created. Each picture was
also normalized by removing the mean intensity value and dividing by the pixel
standard deviation. Moreover, the linear contour size filter outperforms every-
thing else. The linear contour size filter is a looping algorithm that simulates the
diffusion process in the following way:

ρN(a, b, t+ 1)

ρm
= div (∇N), (1)

where N(a, b, t+ 1) can be written as:

N(a, b, t+ 1) = N(a, b, t) + div (H(|∇N |)∇N), (2)

where ρ denotes a noise filter, ∇N denotes the summation of noise scores, a, b,
t are values of the neighboring pixels’ noise, and m is the image’s pixel count.

For two reasons, noisy pixels are filtered out much more rapidly than edge
pixels. The first is that, according to the equation, gradients in opposing direc-
tions cancel each other out, but this is not the case with noise pixels. Second, the
anisotropic diffusion filter has a significant influence only when a large number
of neighbors have a big gradient magnitude. Noisy pixels are scattered around
the image rather than concentrated in one spot, and therefore their intensity is
distinct from the surrounding pixels,

M(a, b,K + 1) = N(a, b,K) +
λ∣∣δ(a,b)

∣∣ ∑
(j,i)∈δ(a,b)

H
(∣∣∣∇N (a,b)

(j,i)

∣∣∣)∇N (a,b)
(j,i) . (3)
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The pixel signature of edge pixels, on the other hand, is far more similar to
that of the bulk of pixels in their proximity. This assists in the elimination of
contaminants that may make subsequent morphological procedures more difficult
to identify abnormalities:

∇e(a,b)
90◦ = N(a, b− 1,K)−N(a, b,K), (4)

∇e(a,b)
−90◦ = N(a, b+ 1,K)−N(a, b,K), (5)

∇e(a,b)
0◦ = N(a+ 1, b,K)−N(a, b,K), (6)

∇e(a,b)
180◦ = N(a− 1, b,K)−N(a, b,K). (7)

3.3. Image augmentation-based hybrid max pool matrix histogram

Color constancy is a vital stage in the hybrid maxpool matrix histogram,
which is a common picture improvement approach. By taking a low-level ap-
proach to color constancy, a link between color constancy and an image’s his-
togram is established. The picture is represented in the hybrid max pool matrix
model

dc =

ˆ
s (λ) l (λ)Cc(λ)dλ, (8)

where λ is the visible light’s wavelength, s (λ) is the reflectivity of the surface,
l (λ) is the source of light, and Cc (λ) is the camera sensitivity in the channel d.

Consider the light source’s projected color on red, green, and blue (RGB)
space, with the aim of color constancy. Assumptions have been made to reach
this aim. As an example, consider the max-RGB, which uses the three chan-
nels’ maximum responses to determine the light source’s approximate location
and intensity. In addition, the gray-world theory posits that the scene’s aver-
age reflectance is achromatic. Recent developments have converged on the fol-
lowing:

ˆ
|f(x)|βdx
ˆ
dx


1/β

= Aa, (9)

where x is the pixel’s coordinate, A is an arbitrarily high number, β is a param-
eter, and a = [ar, ag, ab]

T is the normalized estimation of the light source.



A novel framework for fetal nuchal translucency abnormality detection. . . 283

The left-hand side of Eq. (9) may be expressed from the perspective of an
image histogram:


ˆ
|f(x)|

β

dx
ˆ
dx


1/β

=



(
QTr h

β
r

)1/β

(
QTg h

β
g

)1/β

(
QTb h

β
b

)1/β

, (10)

where hβn = [hβn1, ..., h
β
nK ]

T
. The relationship between white balance and his-

togram is revealed, assuming a picture is provided, and determined as:

an(β) =

(
QTr h̃

β
r

)1/β

√ ∑
c=r,g,b

(
QTr h̃

β
r

)2/β
. (11)

Thus, the hybrid maxpool matrix histogram (h̃c) is as follows:

h̃c =
1

ec (β)
√

3
h̃c. (12)

This is a linear process. The histogram-based hybrid max pool matrix algorithm’s
most notable characteristic is the transform linearity.

Algorithm 1 for Image Augmentation
if (there is no trained model available) then
load input
pixel to image conversion
image conversion to grayscale
grayscale picture histogram equalization
detect the edges from the images
resize all pixels’ value
augment data by rotation, resizing, and zooming
train (70%), validation (15%), test (15%) ← dataset
save trained model
else
load trained model
test model with the test dataset
image splitt into normal and abnormal
error rate analyzed
IoU measured
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4. Performance analysis

In this section, efficient techniques based on linear contour size filter and
HMMHA are proposed and developed for NT image augmentation. The perfor-
mance of the system is employed in the average pixel-level distance between the
ground-truth point and the projected center point as an assessment criterion for
center point identification. The NT area is defined as a rectangular rectangle
with a 4:3 aspect ratio centered at the expected center point. To ensure that the
rectangular area contains NT, then set the height to 128 pixels, which is almost
twice the greatest NT region height. True positives are anticipated NT areas
that include ground-truth center points, whereas false positives are predicted
NT regions that do not contain ground-truth center points. The proposed work
is compared to three existing networks: ultrasound networks (U-Net) [2], resid-
ual networks (ResNet-18) [18], and densely connected convolutional networks
(DenseNet-121) [19].

Data augmentation improved performance significantly, as shown in Table 1.
Compared to existing networks, the proposed model outperformed them, sug-
gesting that it is well-suited to the task of NT augmentation. Figure 3 depicts the
intersection over union (IoU) detection, with the green box indicating ground-
truth bounding box and the orange box indicating that the predicted bounding
box was 97% accurate.

Table 1. Comparative results for error rate and intersection over union (IoU)
for the NT augmentation.

Algorithm Error rate [%] IoU
U-Net [2] 41.69 0.6991
ResNet-18 [18] 50.39 0.6686
DenseNet-121 [19] 50.21 0.6354
Hybrid maxpool matrix histogram (proposed) 28.21 0.9289

Fig. 3. NT augmentation visualization.
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Figure 4 shows a percentage comparison of the error rate for the existing and
proposed methods. Compared to the existing techniques, the proposed method
has a low error rate.

Number of images

Er
ro

r r
at

e 
[%

]

U-Net [2]
ResNet 18 [18]
DenseNet 121 [19]
Hybrid maxpool matrix histogram (proposed)

Fig. 4. Error rate vs. the number of images.

A total of 33 images were taken and used the suggested algorithm to divide
them into two categories: normal and abnormal, as shown in Fig. 5. It is noticed

fetal: normal

fetal: abnormal

Fig. 5. Final result for the data augmentation.
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that the photographs with the highest risk area (in the green box) indicate that
the water content is low level (in mm), as shown in Fig. 5. The performance
of the proposed technique is analyzed in terms of sensitivity, MCC, accuracy,
precision, recall, and F1-score as follows.

4.1. Sensitivity

Consider a medical diagnostic test as an example. The test is capable of
appropriately identifying patients who are suffering from the disease being tested
for. The sensitivity of a test used to diagnose a condition (also known as the
detection rate in a clinical context) is the proportion of persons who test positive
for the disease among those who have it. Equation (13) may be used to represent
this mathematically

Sensitivity =
tp

tp + fn
. (13)

When compared to the existing approaches, such as machine learning algorithm
(MLA), feed forward neural network algorithm (FFNN), ultrasound imaging
techniques (UIT), and adaptive risk prediction system (ARPS), the proposed
method has higher sensitivity.

4.2. Matthews correlation coefficient (MCC)

The MCC is a contingency matrix technique for determining the Pearson
product-moment correlation coefficient between actual and anticipated data. The
following is a summary of MCC’s entries

MCC =
(tptn − fpfn)√

(tp + fp) (tp + fn) (tn + fp) (tn + fn)
. (14)

When compared to each other, the proposed approach has the highest MCC
compared to the existing models.

4.3. Accuracy

There is a formula for calculating the number of samples that can be effec-
tively classified. It determines how close the results are to the predicted outcome.
It is calculated by dividing the total number of real positives and true negatives
by the total number of expected positives and negatives

Accuracy =
tp + tn

tp + tn + fp + fn
. (15)
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The proposed approach has a high accuracy of 95% and the existing models have
lower accuracy values.

4.4. Precision

Precision is a metric that counts the number of favorable occurrences that
were properly anticipated. A properly expected positive example is calculated
as a proportion of all successfully projected positive instances. To put it another
way, the true positive is obtained by dividing the total of true and positive
numbers

Precision =
tp

tp + fp
. (16)

The precision of the proposed method is comparatively higher than the existing
models.

4.5. Recall

By dividing the number of true positives by the total number of true positives
and false negatives in a sample of data, the recall rate can be calculated

Recall =
tp

tp + fn
. (17)

Recall for the existing approaches is lower when compared to the proposed
method.

4.6. F1-score

The F1-score is obtained as the harmonic mean of precision and recall during
a certain period. It is a statistical metric for evaluating performance. As a result,
both false positives and false negatives are factored into this score

F1-score =
2× precision× recall
precision + recall

. (18)

The F1-score of the proposed approach is comparatively high when compared
with the traditional methods.

The sensitivity, MCC, accuracy, precision, recall and F1-score of various tech-
niques are compared with the proposed HMMHA method, and the parameters
are listed in Table 2. From the obtained results, it is evident that the proposed
HMMHA performs better than the conventional approaches.
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Table 2. Performance analysis of various algorithms with the proposed HMMHA method.

Methods Sensitivity
Matthews
correlation
coefficient

Accuracy Precision Recall F1-score

Machine learning algorithm
(MLA) 74.8 64.5 73.8 68.4 65.5 68.9

Feed forward neural network
algorithm (FFNN) 80.2 78.3 83.4 84.7 70.2 82.3

Ultrasound imaging
techniques (UIT) 68.4 70.9 71.2 72.4 74.6 74.6

Adaptive risk prediction
system (ARPS) 82.6 76.4 86.7 87.6 87.6 84.6

Proposed hybrid maxpool
matrix histogram analysis
(HMMHA)

90.4 92.6 95.8 98.1 97.2 96.3

5. Conclusion

In this research work, a machine learning-based NT detection and measure-
ment method was described. The primary goal of this research was to create and
apply a new system for identifying NT fetal abnormalities. In this work, several
machine learning approaches, such as preprocessing and picture augmentation
to assess abnormalities in the NT fetus, were used. According to qualitative and
quantitative results, the whole system provides error rate and data augmentation
NT detection findings in normal and abnormal conditions. The proposed model
may support doctors in making decisions about pregnancies with fetal growth
restriction, particularly for patients who have aberrant umbilical arterial flow or
congenital anomalies and do not require induced labor due to these abnormali-
ties. The performance of the proposed technique was analyzed in terms of error
rate, sensitivity, MCC, accuracy, precision, recall, and F1-score. The error rate
of the proposed model is 28.21% and it is found to be better compared with the
other approaches.
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