PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A CFD Study of the Aerodynamic Characteristics of Twardowsky and FOK Rockets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stability and performance are crucial characteristics for aerospace vehicles. The ability to investigate the aerodynamics and performance of rockets gives an insight into their stability before flight and the potential for design and performance enhancements. For the past 13 years, the Rocketry Division within the students’ Space Association of Warsaw University of Technology has been developing sounding rockets of different designs and mission profiles. Two rockets have been chosen for the CFD (Computational Fluid Dynamics) campaigns, FOK and Twardowsky. This paper describes the mathematical model of aerodynamic loads used by the Division for sounding rocket simulation, followed by CFD campaigns for the two rockets. The results of the CFD analysis are then used to calculate the rockets’ aerodynamic derivatives according to a previously defined mathematical model.
Rocznik
Strony
35--58
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Students’ Space Association, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Students’ Space Association, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Students’ Space Association, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Division of Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Division of Automation and Aeronautical Systems, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • [1] Xie, Kan, Liu, Yu, and Xin, Jianren. “Controlled canard configuration study for a solid rocket motor based unmanned air vehicle.” Journal of Mechanical Science and Technology vol. 23, no. 12 (Dec. 2009): pp. 3271-3280. doi: 10.1007/s12206-009-0920-4.
  • [2] Despirito, James, Vaughn, Milton E., and Washington, W. David. “Numerical Investigation of Canard Controlled Missile with Planar and Grid Fins.” Journal of Spacecraft and Rockets vol. 40, no. 3 (2003): pp. 363-370. doi: 10.2514/2.3971.
  • [3] Chen, Yong-Chao, Gao, Xin-Bao, and Gao, Min. “Numerical simulation on rolling characteristics of canard-controlled rockets with a free-spinning tail.” International Journal of Modeling, Simulation, and Scientific Computing, vol. 08, no. 02 (Jun. 2017): p. 1750061. doi: 10.1142/s1793962317500611.
  • [4] Chen, Yong-Chao, Gao, Xin-Bao, and Gao, Min. “Investigation of the aerodynamic parameters simulation method of a guided rocket.” SIMULATION, vol. 94, no. 6 (Jun. 2018): pp. 477-491. doi: 10.1177/0037549717737854.
  • [5] Chen, Han, and Chen, Dongyang. “Numerical simulation Calculation and Analysis of the Effect of Rocket and Duck Rudder on Its Aerodynamic Characteristics and Flexible Deformation.” IOP Conference Series: Materials Science and Engineering, vol. 677 (Dec. 2019): p. 052051. doi: 10.1088/1757-899X/677/5/052051.
  • [6] Despirito, James, Vaughn, Milton E., and Washington, W. David. “Numerical Investigation of Aerodynamics of Canard-Controlled Missile Using Planar and Grid tail Fins. Part 1. Supersonic Flow.” ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD. (sep. 2002). Accessed: Jul. 02, 2021. [online]. Available: https://apps.dtic.mil/sti/citations/ADA408016.
  • [7] Dahalan, Md Nizam, Suni, Ahmad Fitri, Ishak, Iskandar Shah, Mohd, Nik Ahmad Ridhwan Nik, and Mat, Shabudin. “Aerodynamic Study of Air Flow over A Curved Fin Rocket.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 40, no. 1, Art. no. 1 (2017).
  • [8] López, Deibi, Domínguez, Diego, and Gonzalo, Jesús. “Impact of turbulence modelling on external supersonic flow field simulations in rocket aerodynamic.” International Journal of Computational Fluid Dynamics, vol. 27, no. 8-10, (Dec. 2013): pp. 332-341. doi: 10.1080/10618562.2013.867951.
  • [9] Ruchała, Paweł, Placek, Robert, Stryczniewicz, Wit, Matyszewski, Jan, Cieśliński, Dawid and Bartkowiak, Bartosz. “Wind tunnel tests of Influence of boosters and Fins on Aerodynamic Characteristics of the Experimental Rocket Platform.” Transactions on Aerospace Research, vol. 2017, no. 4 (2017): pp. 82-102. doi: 10.2478/tar-2017-0030.
  • [10] Boon, Tan Han. “CFD Comparative study of 3-D Compressible Flow over Seamless and Canard Aerodynamic Flying Bodies.” Final Year Project, Universiti Teknologi PETRONAS, Universiti Teknologi PETRONAS (2016). Accessed: Jul. 02, 2021. [online]. Available: http://utpedia.utp.edu.my/17063/.
  • [11] Sahu, Jubaraj, Silton, Sidra, and Heavey, Karen R. “High-fidelity CFD modeling of maneuvering projectile aerodynamics.” (2003). [online]. Available: https://hpc.mil/images/hpcmpo_images/featured/jubaraj_18jun13_v2.pdf
  • [12] Ahmersheen, Ammar Eltaj Mohammed. “Aerodynamic analysis of (GRAD (Rocket using (CFD).”, Master thesis, Sudan University of Science and Technology (2019). Accessed: Jul. 01, 2021. [online]. Available: http://repository.sustech.edu/bitstream/handle/123456789/24475/Aerodynamic%20analysis%20%20.....pdf?sequence=1&isAllowed=y
  • [13] Silton, Sidra I., and Fresconi, Frank. “Effect of Canard Interactions on Aerodynamic Performance of a Fin-Stabilized Projectile.” Journal of Spacecraft and Rockets, vol. 52, no. 5 (2015): pp. 1430-1442. doi: 10.2514/1.A33219.
  • [14] Calimanescu, Ioan., Nicolae, Buzbuchi, and Grigorescu, Lucian. “A Spinning Tail Missile CFD Aerodynamic Study.” Constanta Maritime University Annals, vol. 16 (2011). [online]. Available: https://www.researchgate.net/publication/290263454_A_spinning_tail_Missile_CFD_Aerodynamic_Study.
  • [15] Chen, Yong-Chao, Gao, Xin-Bao, Gao, Min, and Lv, Hui-Miao. “Aerodynamic characteristic of a canard guided rocket.” International Journal of Modeling, Simulation, and Scientific Computing, vol. 08, no. 01 (Mar. 2017): p. 1750001. doi: 10.1142/s1793962317500015.
  • [16] Fedaravičius, Algimantas, Kilikevičius, Sigitas, and Survila, Arvydas. “Investigation on the aerodynamic characteristics of a rocket-target for the system ‘stinger’.” Journal of Vibroengineering, vol. 17, no. 8, Art. no. 8 (2015).
  • [17] Hammargren, Kristoffer. “Aerodynamics Modeling of sounding rockets: A Computational Fluid Dynamics Study.” Master thesis, Luleå University of Technology (2018). [online]. Available: https://www.divaportal.org/smash/get/diva2:1241365/FULLTEXT02.
  • [18] Peng, Jiazhong, Zhao, Liangyu, and Jiao, Longyin. “Numerical Simulations on Aerodynamic Characteristics of a Guided Rocket Projectile.” Manufacturing Technology and Control, 3rd International Conference on Materials Engineering. pp. 1004-1007. 2016.
  • [19] Abbas, Laith K., Chen, Dongyang, and Rui, Xiaoting. “Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket.” International Journal of Aerospace Engineering Vol. 2014 (Feb. 2014): p. e478534. doi: 10.1155/2014/478534.
  • [20] Aytaç, Zeynep and Aktaş, Fatih. “Utilisation of CFD for the Aerodynamic Analysis of a Subsonic Rocket.” Politeknik Dergisi, 2020. [online]. Available: https://dergipark.org.tr/en/download/article-file/1046009.
  • [21] Dongyang, Chen, Abbas, Laith K., Xiaoting, Rui, and Guoping, Wang. “Aerodynamic and static aeroelastic computations of a slender rocket with all-movable canard surface.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering Vol. 232 (Jun. 2017): p. 095441001770590. doi: 10.1177/0954410017705901.
  • [22] Cieśliński, Dawid, J. “Wyznaczanie zapasu stateczności statycznej niekierowanych pocisków rakietowych stabilizowanych aerodynamicznie.” Bachelor thesis, Warsaw University of Technology, Warsaw. 2015.
  • [23] Miedziński, Dariusz, Sochacki, Mateusz, Bresler, Karol, Małecki, Szymon, Mochol, Aleksandra, and Wojciechowski, Konrad. “Low cost rocket guidance and control development platform.” 71st International Astronautical Congress (IAC) - The CyberSpace Edition, Paris, 12-14 October 2020.
  • [24] Michałów, Maciej, Kaczmarek, Kacper and Umiński, Piotr “SKA Rocket Flight Simulation.” Students’ Space Conference, Gdańsk, 2020.
  • [25] Zipfel, Peter H. “Modeling and Simulation of Aerospace Vehicle Dynamics.” American Institute of Aeronautics and Astronautics. doi: 10.2514/4.102509.
  • [26] McCoy, Robert L. “Modern Exterior Ballistics: the launch and flight dynamics of symmetric projectiles.” Schiffer Military History, Atglen, PA (2012).
  • [27] “IEEE Standard for Floating-Point Arithmetic” in IEEE Std 754-2019 (Revision of IEEE 754-2008). (22 July 2019): pp.1-84. doi: 10.1109/IEEESTD.2019.8766229.
  • [28] Pointwise. “Compute Grid Spacing for a Given Y+.” https://www.pointwise.com/yplus/index.html (24/03/2021).
Uwagi
1. The Students’ Space Association would like to thank Mesco sp. z.o.o. and ANSYS Inc. for providing the Ansys® Academic Mechanical and CFD license. The authors would also like to thank the Division of Aerodynamics at the Faculty of Power and Aeronautical Engineering at Warsaw University of Technology for granting access to its high-performance computing cluster.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dd0a199-19e9-4370-8536-ecc36c6b6dd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.