PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual Machining of Total Knee Replacement Products Based on Finite Element Analysis (FEA) and Re-Design Optimization by ISO 14243

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluates the performance of total knee replacement (TKR) components by examining the design, simulation, and machining processes involved. The purpose was to assess the suitability of computer-aided design (CAD) about established standards for total knee replacement (TKR) components, focusing on the femoral and tibial components. Finite element analysis (FEA) was conducted using Abaqus software to simulate stress and contact pressure on the components, specifically under ISO 14243-3 Standard loading conditions. The results revealed that stress concentrations and maximum contact pressure occurred at several points, with peak pressure observed on the lateral side of the femoral component. Based on these findings, the study included a redesign of the knee implant components, followed by re-validation using finite element analysis (FEA). The study also explored the machining process of the femoral component, highlighting the importance of using computer-aided manufacturing (CAM) software to ensure precision in producing complex geometries. CAM software simulations were used to verify tool paths and prevent manufacturing errors. These results underscore the importance of integrating CAD, FEA, and CAM processes to improve the design and production of TKR components.
Wydawca
Rocznik
Tom
Strony
258--267
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering Faculty of Engineering Diponegoro University Semarang, Central Java, Indonesia Mechanical Engineering Department PGRI University, Semarang Central Java, Indonesia
autor
  • Center for Bio-Mechanics Bio-Material Bio-Mechatronics and Bio-Signal Processing (CBIOM3S) Central Java, Indonesia
autor
  • Department of Mechanical Engineering Faculty of Engineering Diponegoro University, Semarang Central Java, Indonesia
  • Center for Advanced Materials Research OR Nanotechnology and Materials-BRIN
  • Department of Orthopaedic and Traumatology Dr. Kariadi Hospital, Semarang Central Java, Indonesia
autor
  • Department of Mechanical Engineering Faculty of Engineering Wahid Hasyim University Semarang, Central Java, Indonesia
  • Center for Bio-Mechanics Bio-Material Bio-Mechatronics and Bio-Signal Processing (CBIOM3S) Central Java, Indonesia
autor
  • Department of Industrial Engineering Faculty of Industrial Technology University of Atma Jaya Yogyakarta Yogyakarta, Indonesia
Bibliografia
  • [1] X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008.
  • [2] P.F. Sharkey, P.M. Lichstein, C. Shen, A.T. Tokarski, J. Parvizi, ‘Why Are Total Knee Arthroplasties Failing Today – Has Anything Changed After 10 Years?’, J Arthroplasty, vol. 29, no. 9, pp. 1774-1778, 2014, doi: 10.1016/j.arth.2013.07.024.
  • [3] D. Darmanto, R. Novriansyah, P. W. Anggoro, R. Ismail, J. Jamari, A. P. Bayuseno, ‘A review on flexion angle in high-flexion total knee arthroplasty for indonesian’s need’, Front Mech Eng, vol. 8, 2022, doi: 10.3389/fmech.2022.1049796.
  • [4] M. Hoffman, ‘Anatomy of the Knee’, https://www.webmd.com/pain-management/knee-pain/knee-pain-overview.
  • [5] Orthoinfo. Revision, ‘Revision Total Knee Replacement’, https://orthoinfo.aaos.org/en/treatment/revision-total-knee-replacement/.
  • [6] Y. Sandeep Kumar, R. Rao KVS, S.R. Yalamalle, S.M. Venugopal, S. Krishna, ‘Applications of 3D printing in TKR Pre surgical planning for Design Optimization – A Case Study’, Mater Today Proc, vol. 5, no. 9, pp. 18833-18838, 2018, doi: 10.1016/j.matpr.2018.06.230.
  • [7] A.H. Saputro, T. Hidayat, ‘Analisa Poros Alat Uji Keausan Untuk Sistem Kontak Two-Disc Dengan Menggunakan Metode Elemen HINGGA’, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 283-290, 2017, doi: 10.24176/simet.v8i1.962.
  • [8] Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918.
  • [9] F. Djoudi, ‘3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model’, J Orthop, vol. 10, no. 4, pp. 155-161, 2013, doi: 10.1016/j.jor.2013.09.009.
  • [10] Y.-G. Koh, J.-A. Lee, K.-T. Kang, ‘Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis’, Lubricants, vol. 7, no. 4, p. 30, Apr. 2019, doi: 10.3390/lubricants7040030.
  • [11] X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008.
  • [12] H. Prawibowo, F.T. Putri, R. Ismail, M. Tauviqirrahman, R. Novriansyah, Y. Setyoadi, ‘Finite Element Analysis on a Bionic Foot Prosthesis Model during Walking Gait Phases’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390945.
  • [13] FDA, ‘https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/knee-joint-patellofemorotibial-andfemorotibial-metalpolymer-porous-coated-uncementedprostheses’, FDA.
  • [14] Endolab, ‘https://www.endolab.org/simulator-knee-implants.asp’, Endolab.
  • [15] G. Bergmann et al., ‘Standardized Loads Acting in Knee Implants’, PLoS One, vol. 9, no. 1, p. e86035, Jan. 2014, doi: 10.1371/journal.pone.0086035.
  • [16] Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918.
  • [17] B. Innocenti, L. Labey, A. Kamali, W. Pascale, S. Pianigiani, ‘Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: A Finite Element Analysis’, Lubricants, vol. 2, no. 4, pp. 193-205, Nov. 2014, doi: 10.3390/lubricants2040193.
  • [18] T. Otani, L.A. Whiteside, S.E. White, D.S. McCarthy, ‘Effects of femoral component material properties on cementless fixation in total hip arthroplasty’, J Arthroplasty, vol. 8, no. 1, pp. 67-74, Feb. 1993, doi: 10.1016/S0883-5403(06)80110-5.
  • [19] B. Gervais, A. Vadean, M. Raison, M. Brochu, ‘Failure analysis of a 316L stainless steel femoral orthopedic implant’, Case Stud Eng Fail Anal, vol. 5-6, pp. 30-38, Apr. 2016, doi: 10.1016/j.csefa.2015.12.001.
  • [20] A. Markopoulos, N. Galanis, N. Karkalos, D. Manolakos, ‘Precision CNC Machining of Femoral Component of Knee Implant: A Case Study’, Machines, vol. 6, no. 1, p. 10, Mar. 2018, doi: 10.3390/machines6010010.
  • [21] L. Bauer et al., ‘Different ISO standards’ wear kinematic profiles change the TKA inlay load’, Applied Sciences (Switzerland), vol. 11, no. 7, Apr. 2021, doi: 10.3390/app11073161.
  • [22] X.H. Wang et al., ‘The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses’, PLoS One, vol. 13, no. 10, Oct. 2018, doi: 10.1371/journal.pone.0206496.
  • [23] A.P. Markopoulos, N.I. Galanis, N.E. Karkalos, D.E. Manolakos, ‘Precision CNC machining of femoral component of knee implant: A case study’, Machines, vol. 6, no. 1, 2018, doi: 10.3390/MACHINES6010010.
  • [24] M.A. Kumbhalkar, P.H. Jaiswal, H.M. Bansod, ‘Design and manufacturing of knee joint by CAD/CAM and rapid prototyping’, Journal of the Institution of Engineers (India): Mechanical Engineering Division, vol. 92, no. APRIL, pp. 25-28, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dc6c16d-a1ba-4321-9123-245bf25915e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.