PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Triggering Mechanism of the Square Thin-Walled Absorber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research is the analysis of thin-walled aluminum profiles with embossed crush initiator. Samples with square cross-section loaded dynamically were studied until the complete loss of velocity by the tup. The numerical analyses were based on an elastic-plastic material model. The material properties of AA 6063 aluminum were derived from own tests performed on a tensile machine. The analyses were conducted using the numerical method (Abaqus CAE). Using a dynamic testing machine, the obtained numerical data were verified on the basis of models showing the best improvement in crush efficiency indicators. In the experimental study, high-speed camera images were used to identify the forming plastic hinges. Based on the obtained results of experimental and numerical analysis, crush efficiency indicators were determined and compared. It was determined that the use of a passive energy absorber increases the efficiency of the crushing force by around 50%, in addition, the correct location of the crush initiator allows to gain 15%. The results of the study showed that proper placement of the crush initiator decrease PCF while increasing MCF.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology
Bibliografia
  • 1. Alexander J.M. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q. J. Mech. Appl. Math. 1960; 13: 10–5.
  • 2. Wierzbicki T., Abramowicz W. On the Crushing Mechanics of Thin-Walled Structures. J. Appl. Mech. 1983; 50: 727–34.
  • 3. Abramowicz W., Jones N. Dynamic axial crushing of square tubes. Int. J. Impact Eng. 1984; 2: 263–81.
  • 4. Jones N., dos Reis H.L.M. On the dynamic buckling of a simple elastic-plastic model. Int. J. Solids Struct. 1980; 16: 969–89.
  • 5. Jones N. Structural Impact [Internet]. Cambrigde, UK: Cambridge University Press; 1990.
  • 6. Macaulay M. Introduction to Impact Engineering [Internet]. Dordrecht: Springer Netherlands; 1987.
  • 7. Rogala M., Gajewski J., Górecki M. Study on the Effect of Geometrical Parameters of a Hexagonal Trigger on Energy Absorber Performance Using ANN. Materials (Basel). 2021; 14: 5981.
  • 8. Kim H.S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct. 2002; 40: 311–27.
  • 9. Marshall N.S., Nurick G.N.. Effect of induced imperfections on the formation of the first lobe of symmetric progressive buckling of thin-walled square tubes. Int. Conf. Struct. Under Shock Impact, SUSI 1998; 32: 155–68.
  • 10. Kaczyński P., Gronostajski Z., Polak S. Progressive crushing as a new mechanism of energy absorption. The crushing study of magnesium alloy crash-boxes. Int. J. Impact Eng. 2019; 124: 1–8.
  • 11. Ferdynus M., Gajewski J. Identification of crashworthiness indicators of column energy absorbers with triggers in the form of cylindrical embossing on the lateral edges using artificial neural networks. Eksploat. i Niezawodn. 2022; 24: 805–21.
  • 12. Qureshi O.M., Bertocchi E. Crash performance of notch triggers and variable frequency progressive-triggers on patterned box beams during axial impacts. Thin-Walled Struct. 2013; 63: 98–105.
  • 13. Rogala M., Gajewski J. Crashworthiness Analysis of Thin-Walled Square Columns with a Hole Trigger. Materials (Basel). 2023; 16: 4196.
  • 14. Peixinho N., Soares D., Vilarinho C., Pereira P., Dimas D. Experimental study of impact energy absorption in aluminium square tubes with thermal triggers. Mater. Res. 2012; 15: 323–32.
  • 15. Nikkhah H., Baroutaji A., Kazancı Z., Arjunan A. Evaluation of crushing and energy absorption characteristics of bio-inspired nested structures. ThinWalled Struct. 2020.
  • 16. Rogala M., Ferdynus M., Gawdzińska K., Kochmański P. The Influence of Different Length Aluminum Foam Filling on Mechanical Behavior of a Square Thin-Walled Column. Materials (Basel). 2021; 14: 3630.
  • 17. Rogala M., Tuchowski W., Czarnecka-Komorowska D., Gawdzińska K. Analysis and Assessment of Aluminum and Aluminum-Ceramic Foams Structure. Adv. Sci. Technol. Res. J. 2022; 16: 287–97.
  • 18. Rogala M., Gajewski J. Numerical analysis of porous materials subjected to oblique crushing force Numerical analysis of porous materials subjected to oblique crushing force. J. Phys. Conf. Ser. 2021; 1736.
  • 19. Rogala M., Gajewski J., Gawdzińska K. Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. Compos. Struct. 2022; 299: 116102.
  • 20. Gajewski J., Golewski P., Sadowski T. The use of neural networks in the analysis of dual adhesive single lap joints subjected to uniaxial tensile test. Materials (Basel). 2021; 14: 1–17.
  • 21. Rogala M., Gajewski J., Głuchowski D. Crushing analysis of energy absorbing materials using artificial neural networks. J. Phys. Conf. Ser. 2021; 1736: 012026.
  • 22. Gajewski J., Vališ D. Verification of the technical equipment degradation method using a hybrid reinforcement learning trees–artificial neural network system. Tribol. Int. 2021; 153.
  • 23. Yang M., Han B., Su P., Zhang Q., Zhang Q., Zhao Z., et al. Crashworthiness of hierarchical truncated conical shells with corrugated cores. Int. J. Mech. Sci. 2021; 193.
  • 24. Wysmulski P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Compos. Struct. 2023; 305: 116446.
  • 25. Rozylo P. Failure phenomenon of compressed thin-walled composite columns with top-hat crosssection for three laminate lay-ups. Compos. Struct. 2023; 304: 116381.
  • 26. Wysmulski P. Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole. Adv. Sci. Technol. Res. J. 2023; 17: 249–61.
  • 27. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Compos. Struct. 2023; 305: 116474.
  • 28. Wysmulski P. The analysis of buckling and post buckling in the compressed composite columns. Arch. Mater. Sci. Eng. 2017; 85: 35–41.
  • 29. Jonak J., Karpiński R., Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials (Basel). 2021; 14: 3880.
  • 30. Jonak J., Karpiński R., Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials (Basel). 2021; 14: 2371.
  • 31. Jonak J., Karpiński R., Wójcik A. Influence of Anchor Depth and Friction Coefficient Between Anchor and Rock on the Trajectory of Rock Masses Detachment. Adv. Sci. Technol. Res. J. 2023; 17: 290–8.
  • 32. Kopczyński A., Rusiński E. Passive safety. Energy absorption by thin-walled profiles. Wrocław: Publishing House of the Wrocław University of Technology; 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dc58afe-593a-4bfb-afe8-0837c1729419
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.