PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial sustainable biopolymers for biomedical plastics applications – an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biomedyczne zastosowania biopolimerów o właściwościach przeciwbakteryjnych i przeciwwirusowych – przegląd literatury
Języki publikacji
EN
Abstrakty
EN
The Covid-19 pandemic has increased the need for personal protective equipment (PPE), especially for medical personnel: face masks, full protective clothing, gloves and goggles. To date, they are usually made of thermoplastic polymers, such as polypropylene (PP). To reduce the risk of secondary infections it is essential to enhance the antimicrobial (especially antibacterial and antiviral) properties of the materials used in PPE. There are some attempts to modify materials by, for example, silver nanoparticles or zinc oxides. The increasing demand for personal protective equipment, mostly masks, leads to an increase of environmental problem of non-biodegradable wastes. Therefore some researches on use of safer for user’s health sustainable antimicrobial and biodegradable biopolymer fibers, such as cellulose, starch, chitosan, poly(lactic acid) (PLA) or poly(glycolic acid) (PGA), have been done. These biopolymers and their properties are discussed in this article.
PL
Pandemia Covid-19 zwiększyła zapotrzebowanie na środki ochrony osobistej (PPE), zwłaszcza dla personelu medycznego. Dotyczy to przede wszystkim maseczek, ale również odzieży ochronnej, rękawic, czy gogli. Obecnie wykonuje się je najczęściej z termoplastycznych polimerów, np. polipropylenu (PP). W celu poprawy właściwości przeciwbakteryjnych i przeciwwirusowych stosowanych materiałów, dokonuje się prób modyfikacji ich za pomocą np. nanocząstek srebra lub tlenków cynku. Zwiększenie zapotrzebowania na środki ochrony osobistej, zwłaszcza na maseczki, prowadzi do zwiększenia ilości odpadów, w dużej mierze nie biodegradowalnych. W celu rozwiązania tego problemu oraz poprawy właściwości przeciwbakteryjnych i przeciwwirusowych materiałów z użyciem bezpieczniejszych dla zdrowia użytkowników substancji, prowadzi się badania nad wykorzystaniem włókien z biopolimerów, takich jak celuloza, skrobia, chitozan, poli(kwas mlekowy) (PLA) lub poli(kwas glikolowy) (PGA). Właściwości antybakteryjne i antywirusowe, a także zagadnienia biodegradowalności tych biopolimerów, zostały omówione w niniejszym artykule.
Czasopismo
Rocznik
Strony
574--583
Opis fizyczny
Bibliogr. 113 poz., rys. kolor., tab., wykr.
Twórcy
  • Green Polymer Research Group, Faculty Applied Sciences, UiTM Shah Alam, Selangor, Malaysia
  • Green Polymer Research Group, Faculty Applied Sciences, UiTM Shah Alam, Selangor, Malaysia
Bibliografia
  • [1] SaitoT. et al.: Materials Horizons 2014, 1, 321. https://doi.org/10.1039/c3mh00134b
  • [2] Anitha A. et al.: Progress in Polymer Science 2014, 39, 1644. https://doi.org/10.1016/j.progpolymsci.2014.02.008
  • [3] Long Y. et al.: Journal of Evidence-Based Medicine 2020, 13, 93. https://doi.org/10.1111/jebm.12381
  • [4] van der Sande M., Teunis P., Sabel R.: PLoS ONE 2008, 3, 3. https://doi.org/10.1371/journal.pone.0002618
  • [5] Sharma N. et al.: Journal of Health Management 2020, 22, 157. https://doi.org/10.1177/0972063420935540
  • [6] Allison A.L., Ambrose-Dempster E., Aparsi T.D.: Journal of Chemical Information and Modeling 2020, 53, 21. https://doi.org/10.14324/111.444/000031.v1
  • [7] Henneberry B.: Thomas Publishing Company 2021.
  • [8] Jummaat F. et al.: Polymers 2021, 13, 633. https://doi.org/10.3390/polym13040633
  • [9] Harussani M.M. et al.: Polymers 2021, 13, 1707. https://doi.org/10.3390/polym13111707
  • [10] Verma R. et al.: Procedia Environmental Sciences 2016, 35, 701. https://doi.org/10.1016/j.proenv.2016.07.069
  • [11] Scaffaro R. et al.: Materials 2016, 9, 351. https://doi.org/10.3390/ma9050351
  • [12] Sivakanthan S. et al.: Food Research International 2020, 136, 109327. https://doi.org/10.1016/j.foodres.2020.109327
  • [13] Muñoz-Bonilla A. et al.: Materials 2019, 12, 641. https://doi.org/10.3390/ma12040641
  • [14] Kupnik K. et al.: Polymers 2020, 12, 2825. https://doi.org/10.3390/polym12122825
  • [15] Sathiyavimal S. et al.: Progress in Organic Coatings 2020, 147, 105858. https://doi.org/10.1016/j.porgcoat.2020.105858
  • [16] Falamarzpour P., Behzad T., Zamani A.: International ournal of Molecular Sciences 2017, 18, 396. https://doi.org/10.3390/ijms18020396
  • [17] Xu J. et al.: Carbohydrate Polymers 2019, 224, 115164. https://doi.org/10.1016/j.carbpol.2019.115164
  • [18] Fernandes S.C.M. et al.: Carbohydrate Polymers 2010, 81, 394. https://doi.org/10.1016/j.carbpol.2010.02.037
  • [19] Moohan J. et al.: Applied Sciences (Switzerland) 2020, 10, 65. https://doi.org/10.3390/app10010065
  • [20] Lubis R. et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 604, 125311. https://doi.org/10.1016/j.colsurfa.2020.125311
  • [21] Hänninen A. et al.: Procedia Engineering 2016, 168, 1176. https://doi.org/10.1016/j.proeng.2016.11.397
  • [22] Hänninen A. et al.: Carbohydrate Polymers 2018, 202, 418. https://doi.org/10.1016/j.carbpol.2018.09.001
  • [23] Lin N., Dufresne A.: European Polymer Journal 2014, 59, 302. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • [24] Cabañas-Romero L.V. et al.: Biomacromolecules 2020, 21, 1568. https://doi.org/10.1021/acs.biomac.0c00127
  • [25] Gardner D.J. et al.: Journal of Adhesion Science and Technology 2008, 22, 545. https://doi.org/10.1163/156856108X295509
  • [26] He M. et al.: Cellulose 2018, 25, 1987. https://doi.org/10.1007/s10570-018-1683-9
  • [27] Sanchez-Salvador J.L. et al.: Nanomaterials 2018, 8, 883. https://doi.org/10.3390/nano8110883
  • [28] Dehnad D. et al.: Carbohydrate Polymers 2014, 105, 222. https://doi.org/10.1016/j.carbpol.2014.01.094
  • [29] Ludueña L.N., Alvarez V.A., Vazquez A.: Materials Science and Engineering A 2007, 460–461, 121. https://doi.org/10.1016/j.msea.2007.01.104
  • [30] Anglès M.N., Dufresne A.: Macromolecules 2001, 34, 2921. https://doi.org/10.1021/ma001555h
  • [31] Nakagaito A.N. et al.: Composites Science and Technology 2009, 69, 1293. https://doi.org/10.1016/j.compscitech.2009.03.004
  • [32] Abdul Khalil H.P.S. et al.: Carbohydrate Polymers 2016, 150, 216. https://doi.org/10.1016/j.carbpol.2016.05.028
  • [33] Xu X. et al.: ACS Applied Materials and Interfaces 2013, 5, 2999. https://doi.org/10.1021/am302624t
  • [34] Moon R.J. et al.: Chemical Society Reviews 2011, 40, 3941. https://doi.org/10.1039/c0cs00108b
  • [35] Jorfi M., Foster E.J.: Journal of Applied Polymer Science 2015, 132, 41719. https://doi.org/10.1002/app.41719
  • [36] Fu L., Zhang J., Yang G.: Carbohydrate Polymers 2013, 92, 1432. https://doi.org/10.1016/j.carbpol.2012.10.071
  • [37] Favi P.M. et al.: Materials Science and Engineering: C 2013, 33, 1935. https://doi.org/10.1016/j.msec.2012.12.100
  • [38] Kim J. et al.: Journal of Polymer Research 2011, 18, 739. https://doi.org/10.1007/s10965-010-9470-9
  • [39] Muller D. et al.: Journal of Biomaterials Science, Polymer Edition 2013, 24, 1368. https://doi.org/10.1080/09205063.2012.761058
  • [40] Sun X. et al.: ACS Applied Materials and Interfaces 2010, 2, 952. https://doi.org/10.1021/am100018k
  • [41] Fernandes S.C.M. et al.: ACS Applied Materials and Interfaces 2013, 5, 3290. https://doi.org/10.1021/am400338n
  • [42] Sun J.X. et al.: Polymer Degradation and Stability 2004, 84, 331. https://doi.org/10.1016/j.polymdegradstab.2004.02.008
  • [43] Supian M.A.F. et al.: Journal of Environmental Chemical Engineering 2020, 8, 103024. https://doi.org/10.1016/j.jece.2019.103024
  • [44] Pang M. et al.: European Polymer Journal 2020, 122, 109365. https://doi.org/10.1016/j.eurpolymj.2019.109365
  • [45] He W. et al.: Advances in Wound Care 2021, 10, 623. https://doi.org/10.1089/wound.2020.1219
  • [46] Shi Q. et al.: Biomaterials 2012, 33, 6644. https://doi.org/10.1016/j.biomaterials.2012.05.071
  • [47] Kurniawan H., Lai J.T., Wang M.J.: Cellulose 2012, 19, 1975. https://doi.org/10.1007/s10570-012-9785-2
  • [48] Hua K. et al.: RSC Advances 2014, 4, 2892. https://doi.org/10.1039/c3ra45553j
  • [49] Wu J. et al.: RSC Advances 2014, 4, 3998. https://doi.org/10.1039/c3ra45407j
  • [50] Barud H.S. et al.: Journal of Nanomaterials 2011, ID 721631. https://doi.org/10.1155/2011/721631
  • [51] Luo Z. et al.: International Journal of Nanomedicine 2020, 15, 1. https://doi.org/10.2147/IJN.S231556
  • [52] Swingler S. et al.: Polymers 2021, 13, 412. https://doi.org/10.3390/polym13030412
  • [53] Chiaoprakobkij N. et al.: Journal of Biomaterials Science, Polymer Edition 2019, 30, 961. https://doi.org/10.1080/09205063.2019.1613292
  • [54] Renault F. et al.: European Polymer Journal 2009, 45, 1337. https://doi.org/10.1016/j.eurpolymj.2008.12.027
  • [55] Muxika A. et al.: International Journal of Biological Macromolecules 2017, 105, 1358. https://doi.org/10.1016/j.ijbiomac.2017.07.087
  • [56] Jayakumar R. et al.: Carbohydrate Polymers 2010, 82, 227. https://doi.org/10.1016/j.carbpol.2010.04.074
  • [57] Madihally S.V., Matthew H.W.T.: Biomaterials 1999, 20, 1133. https://doi.org/10.1016/S0142-9612(99)00011-3
  • [58] Acosta N. et al.: Biomass and Bioenergy 1993, 5, 145. https://doi.org/10.1016/0961-9534(93)90096-M
  • [59] Pavinatto F.J., Caseli L., Oliveira O.N.: Biomacromolecules 2010, 11, 1897. https://doi.org/10.1021/bm1004838
  • [60] Hu Y. et al.: Polymer International 2012, 61, 74. https://doi.org/10.1002/pi.3150
  • [61] Khor E., Lim L.Y.: Biomaterials 2003, 24, 2339. https://doi.org/10.1016/S0142-9612(03)00026-7
  • [62] Rinaudo M.: Progress in Polymer Science (Oxford)2006, 31, 603. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • [63] Dutta P.K., Rinki K., Dutta J.: Advances in Polymer Science, 2011, 244, 45. https://doi.org/10.1007/12_2011_112
  • [64] Gupta K.C., Kumar M.N.V.R.: Journal of Scientific and Industrial Research (JSIR) 2000, 59, 201. http://nopr.niscair.res.in/handle/123456789/17765
  • [65] Yang Y. et al.: Biotechnology Advances 2014, 32, 1301. https://doi.org/10.1016/j.biotechadv.2014.07.007
  • [66] Venkatesan J., Kim S.K.: Marine Drugs, 2010, 8, 2252. https://doi.org/10.3390/md8082252
  • [67] Muzzarelli C., Muzzarelli R.A.A.: Journal of Inorganic Biochemistry 2002, 92, 89. https://doi.org/10.1016/S0162-0134(02)00486-5
  • [68] Decker E.M. et al.: Journal of Periodontal Research 2005, 40, 373. https://doi.org/10.1111/j.1600-0765.2005.00817.x
  • [69] Wichai S. et al.: Journal of Drug Delivery Science and Technology 2019, 51, 662. https://doi.org/10.1016/j.jddst.2019.03.043
  • [70] Gadhave R.V. et al.: Open Journal of Polymer Chemistry 2018, 8, 21. https://doi.org/10.4236/ojpchem.2018.82003
  • [71] Feng M. et al.: Carbohydrate Polymers 2018, 196, 162. https://doi.org/10.1016/j.carbpol.2018.05.043
  • 72] Mandal A. et al.: Physical Chemistry Chemical Physics 2014, 16, 20175. https://doi.org/10.1039/c4cp02554g
  • [73] Adeli H., Khorasani M.T., Parvazinia M.: International Journal of Biological Macromolecules 2019, 122, 238. https://doi.org/10.1016/j.ijbiomac.2018.10.115
  • [74] Ounkaew A. et al.: Carbohydrate Polymers 2020, 248, 116767. https://doi.org/10.1016/j.carbpol.2020.116767
  • [75] Abdollahi Z. et al.: International Journal of Molecular Sciences 2021, 22, 2531. https://doi.org/10.3390/ijms22052531
  • [76] Singhvi M.S., Zinjarde S.S., Gokhale D.V.: Journal of Applied Microbiology 2019, 127, 1612. https://doi.org/10.1111/jam.14290
  • [77] Auras R., Harte B., Selke S.: Macromolecular Bioscience 2004, 4, 835. https://doi.org/10.1002/mabi.200400043
  • [78] Tokiwa Y., Calabia B.P.: Applied Microbiology and Biotechnology, 2006, 72, 244. https://doi.org/10.1007/s00253-006-0488-1
  • [79] Savioli Lopes M., Jardini A.L., Maciel Filho R.: Procedia Engineering 2012, 42, 1402. https://doi.org/10.1016/j.proeng.2012.07.534
  • [80] Gupta B., Revagade N., Hilborn J.: Progress in Polymer Science (Oxford) 2007, 32, 455. https://doi.org/10.1016/j.progpolymsci.2007.01.005
  • [81] Rihayat T. et al.: AIP Conference Proceedings 2018, 2049, 020021. https://doi.org/10.1063/1.5082426
  • [82] Göktürk E., Pemba A.G., Miller S.A.: Polymer Chemistry 2015, 6, 3918. https://doi.org/10.1039/c5py00230c
  • [83] Pat. US 3 463 158 (1969)
  • [84] Middleton J.C., Tipton A.J.: Biomaterials 2000, 21, 2335. https://doi.org/10.1016/S0142-9612(00)00101-0
  • [85] Khalil I.R. et al.: International Journal of Molecular Sciences 2017, 18, 313. https://doi.org/10.3390/ijms18020313
  • [86] Ergene C., Yasuhara K., Palermo E.F.: Polymer Chemistry 2018, 9, 2407. https://doi.org/10.1039/c8py00012c
  • [87] Purwar R., Srivastava C.M.: Nova Science Publishers, Inc., 2015, 455.
  • [88] Cazón P. et al.: Food Hydrocolloids 2017, 68, 136. https://doi.org/10.1016/j.foodhyd.2016.09.009
  • [89] Sahariah P., Másson M.: Biomacromolecules 2017, 18, 3846. https://doi.org/10.1021/acs.biomac.7b01058
  • [90] Verlee A., Mincke S., Stevens C.V.: Carbohydrate Polymers 2017, 164, 268. https://doi.org/10.1016/j.carbpol.2017.02.001
  • [91] Sahariah P. et al.: Biomacromolecules 2015, 16, 1449. https://doi.org/10.1021/acs.biomac.5b00163
  • [92] Wang C.H. et al.: International Journal of Biological Macromolecules 2016, 84, 418. https://doi.org/10.1016/j.ijbiomac.2015.12.047
  • [93] Tang H. et al.: Acta Biomaterialia 2010, 6, 2562. https://doi.org/10.1016/j.actbio.2010.01.002
  • [94] Kumar-Krishnan S. et al.: European Polymer Journal 2015, 67, 242. https://doi.org/10.1016/j.eurpolymj.2015.03.066
  • [95] Zhang X. et al.: Carbohydrate Polymers 2017, 169, 101. https://doi.org/10.1016/j.carbpol.2017.03.073
  • [96] Rahman P.M., Mujeeb V.M.A., Muraleedharan K.: International Journal of Biological Macromolecules 2017, 97, 382. https://doi.org/10.1016/j.ijbiomac.2017.01.052
  • [97] Wahid F. et al.: International Journal of Biological Macromolecules 2016, 88, 273. https://doi.org/10.1016/j.ijbiomac.2016.03.044
  • [98] Chatchawanwirote L. et al.: Journal of Drug Delivery Science and Technology 2019, 54, 101305. https://doi.org/10.1016/j.jddst.2019.101305
  • [99] Khalid A. et al.: Carbohydrate Polymers 2017, 164, 214. https://doi.org/10.1016/j.carbpol.2017.01.061
  • [100] He W. et al.: Journal of Biomaterials Science, Polymer Edition 2018, 29, 2137. https://doi.org/10.1080/09205063.2018.1528518
  • [101] Pathakoti K., Manubolu M., Hwang H.-M.: Journal of Nanoscience and Nanotechnology 2019, 19, 8172. https://doi.org/10.1166/jnn.2019.16757
  • [102] Chin A.W.H. et al.: The Lancet Microbe 2020, 1, e10.https://doi.org/10.1016/s2666-5247(20)30003-3
  • [103] Li Y. et al.: Journal of Hospital Infection 2006, 62, 58. https://doi.org/10.1016/j.jhin.2005.04.015
  • [104] Cheng X. et al.: Applied Surface Science 2014, 309, 138. https://doi.org/10.1016/j.apsusc.2014.04.206
  • [105] Wang Y.F. et al.: Aerosol and Air Quality Research 2017, 17, 2119. https://doi.org/10.4209/aaqr.2017.06.0208
  • [106] Campos R.K. et al.: Journal of Hospital Infection 2020, 106, 835. https://doi.org/10.1016/j.jhin.2020.09.008
  • [107] Botelho C.M. et al.: Fibers 2021, 9, 3. https://doi.org/10.3390/fib9010003
  • [108] Ha T.M., Trinh V.D.: The Future of Service PostCOVID-19 Pandemic 2021, 2, 65. https://doi.org/10.1007/978-981-33-4134-0_4
  • [109] Brand G., 2021. https://ghost-brand.com/product/duritex-face-mask/(access date: 09.12.2021)
  • [110] Babadi A.A., Bagheri S., Hamid S.B.A.: Rubber Chemistry and Technology 2016, 89, 117. https://doi.org/10.5254/rct.15.84882
  • [111] Riyajan S.A. et al.: Rubber Chemistry and Technology 2012, 85, 147. https://doi.org/10.5254/1.3673424
  • [112] Moopayak W., Tangboriboon N.: Journal of Applied Polymer Science 2020, 137, 49119. https://doi.org/10.1002/app.49119
  • [113] Khanzada, H. et al.: Materials 2020, 13, 3884. https://doi.org/10.3390/ma13173884
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dc3ab02-d576-49d6-9193-90e46c252efc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.