PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of hydrometallurgical recovery of lithium, aluminum, iron, and copper from lithium-iron batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As lithium-iron batteries play a crucial role in the growth of electric vehicles, their disposal is projected to increase, posing significant environmental and health risks. Recovering the metals that compose these batteries can help mitigate the negative environmental impacts of mining and address raw material shortages. This research employs hydrometallurgy to recover lithium, aluminum, iron, and copper from the electrode mixture of spent lithium-iron batteries. The average metal content found for lithium, aluminum, iron, and copper was approximately 5%, 2%, 18%, and 16%, respectively. Under optimal leaching conditions, the recovery rates for lithium and aluminum reached 100% and 95%, respectively. These metals can be further separated by pH adjustment to produce lithium and aluminum products. The remaining iron and copper in the leaching residue can also be recovered through additional leaching, replacement, and pH adjustment processes to obtain products containing iron and copper.
Słowa kluczowe
Rocznik
Strony
75--82
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • Department of Environmental Engineering, Da-Yeh University, Changhua 51591, Taiwan
  • Department of Environmental Engineering, Da-Yeh University, Changhua 51591, Taiwan
  • Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados-11000
  • International College, Krirk University, Bangkok 10220, Thailand
Bibliografia
  • 1. Baum, Z. J., Bird, R. E., Yu, X. & Ma, J. (2022). Lithium-ion battery recycling - overview of techniques and trends. DOI:10.1021/acsenergylett.1c02602
  • 2. Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P., & Zaghib, K. (2020). Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability, 12(14), 5837. DOI:10.3390/su12145837
  • 3. Bodzek, M., & Pohl, A. (2022). Removal of microplastics in unit processes used in water and wastewater treatment: a review. Archives of Environmental Protection, 48(4), pp. 102-128. DOI:10.24425/aep.2022.143713
  • 4. Boonphan, S., Prachakiew, S., Klinbumrung, K., Thongrote, C. & Klinbumrung, A. (2024). Enhancing photocatalytic performance of kaolin clay: an overview of treatment strategies and applications. Archives of Environmental Protection, 50(3), pp. 54-64. DOI:10.24425/aep.2024.151686
  • 5. Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N. & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), pp. 2622-2646. DOI:10.1016/j.joule.2019.09.014
  • 6. Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium‐ion batteries. Energy & Environmental Materials, 5(4), pp. 1012-1036. DOI:10.1002/eem2.12271.
  • 7. Du, M., Du, K. D., Guo, J. Z., Liu, Y., Aravindan, V., Yang, J-L., Zhang, K-Y.,Gu, Z-Y., Wang, X-T. & Wu, X. L. (2023). Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Metals, 42(5), pp. 1603-1613. DOI:10.1007/s12598-022-02230-8
  • 8. Du, M., Lü, H., Du, K., Zheng, S., Wang, X., Deng, X., Zeng, R. & Wu, X. (2024). Upcycling the spent graphite/LiCoO₂ batteries for high-voltage graphite/LiCoPO₄-co-workable dual-ion batteries. International Journal of Minerals, Metallurgy and Materials, 31(7), pp. 1745-1751. DOI:10.1007/s12613-023-2807-2
  • 9. Gawroński, S., Łutczyk, G., Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection, 48(2), pp. 24-33. DOI:10.24425/aep.2022.140763
  • 10. International Energy Agency, & Birol, F. (2013). World energy outlook 2013. Paris: International Energy Agency.
  • 11. Kim, B., Kim, D-W. & Choi, H. L. (2023). A study on recovery of cerium by leaching solvents from NiMH waste battery. Archives of Metallurgy Materials, 68(1), pp. 103-106. DOI:10.24425/amm.2023.141480
  • 12. Li, M., Lu, J., Chen, Z. & Amine, K. (2018). 30 years of lithium‐ion batteries. Advanced Materials, 30(33), 1800561. DOI:10.1002/adma.201800561
  • 13. Ministry of the Environment. (2003). Method for determining ash and combustible matter in waste (NIEA R205.01C). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/9DA55CE386B2F925/fb70c258-7fd3-4fff-9518-a4b2a6f7faa4
  • 14. Ministry of the Environment. (2009). Method for determining moisture content of industrial waste - Indirect method (NIEA R203.02C). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/9DA55CE386B2F925/47cdc418-c283-4e18-b622-4d6874219de5
  • 15. Ministry of the Environment. (2018). Method for detecting heavy metals in soil - Aqua regia digestion method (NIEA S321.65B). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/D650FF755904A079/e4422625-6dcc-4b0c-b5e2-2ba0623acfad
  • 16. Or, T., Gourley, S. W., Kaliyappan, K., Yu, A. & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon energy, 2(1), pp. 6-43. DOI:10.1002/cey2.29
  • 17. Raccichini, R., Amores, M. & Hinds, G. (2019). Critical review of the use of reference electrodes in Li-ion batteries: a diagnostic perspective. Batteries, 5(1), 12. DOI:10.3390/batteries5010012
  • 18. Wang, H. & Friedrich, B. (2015). Development of a highly efficient hydrometallurgical recycling process for automotive Li-Ion batteries. Journal of Sustainable Metallurgy, 1, pp. 168-178. DOI:10.1007/s40831-015-0016-6
  • 19. Wang, J-P. (2021). A novel process for recovery of key elements from commercial cathode material of end-of-life lithium-ion battery. Archives of Metallurgy Materials, 66(3), pp. 745-750. DOI:10.24425/amm.2021.136373
  • 20. Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G. & Liang, Z. (2022). Progress, Key Issues, and Future Prospects for Li‐Ion Battery Recycling. Global Challenges, 6(12), 2200067. DOI:10.1002/gch2.202200067
  • 21. Zhang, C. & Deng, Y. (2024). Reductive Leaching Process and Mechanisms of Cadmium from Cadmium-Bearing Zinc Ferrite using Sulfur Dioxide. Archives of Metallurgy Materials, 69(3), pp. 965-971. DOI:10.24425/amm.2024.150916
  • 22. Zheng, S. H., Wang, X. T., Gu, Z. Y., Lü, H. Y., Zhang, X. Y., Cao, J. M., Jin-Zhi Guo, J.Z., Deng, X.T., Wu, Z.T., Zeng, R.H., & Wu, X. L. (2023). Direct and rapid regeneration of spent LiFePO₄ cathodes via a high-temperature shock strategy. Journal of Power Sources, 587, 233697. DOI:10.1016/j.jpowsour.2023.233697
  • 23. Zhang, Y., Lu, X., Deng, S., Zhu, T. & Yu, B. (2024). Bibliometric and visual analysis of heavy metal health risk assessment: development, hotspots and trends. Archives of Environmental Protection, 50(1), pp. 56-71. DOI:10.24425/aep.2024.149432
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dc353d1-871f-4712-934a-1672ff759c4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.