PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green and sustainable separation of metal ions and synthetic dyes from aqueous solutions using deep eutectic solvents : a mini review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zielona i zrównoważona separacja jonów metali i barwników syntetycznych z roztworów wodnych przy użyciu cieczy głęboko eutektycznych : mini przegląd
Języki publikacji
EN
Abstrakty
EN
The development of eco-friendly methods for removing hazardous inorganic and organic contaminants (e.g., metal ions, synthetic dyes) from water systems is of great importance for the health and life of humans and animals. Recently, there has been growing interest in the possibilities of using deep eutectic solvents (DESs) in separation processes aimed at removing various pollutants from aqueous solutions. DESs are typically non-toxic, biodegradable, and can be synthesised using simple methods. Moreover, the components used in DESs synthesis, often considered “green” solvents, can be derived from natural sources. DESs are generally recyclable and relatively cheap. This review highlights recent advancements (mainly from 2023–2024) in the application of various DESs for the removal of metal and metalloid ions, as well as synthetic dyes, from aqueous solutions using solvent extraction (SE) and membrane separation (MP). It also includes critical comments on the limitations of current methods and their potential environmental impacts.
PL
Opracowanie przyjaznych dla środowiska metod usuwania niebezpiecznych zanieczyszczeń nieorganicznych i organicznych (np. jonów metali, barwników syntetycznych) z systemów wodnych ma ogromne znaczenie dla zdrowia i życia ludzi i zwierząt. Ostatnio obserwuje się wzrost zainteresowania możliwościami wykorzystania cieczy głęboko eutektycznych (DES), w procesach separacji przeznaczonych do usuwania różnych zanieczyszczeń z roztworów wodnych, ponieważ DES są zazwyczaj nietoksyczne i biodegradowalne i można je otrzymać za pomocą prostych metod syntezy. Ponadto, składniki do syntezy DES, uważanych za „zielone” rozpuszczalniki, mogą być pozyskiwane ze źródeł naturalnych, a ciecze głęboko eutektyczne można zazwyczaj poddawać recyklingowi i są one stosunkowo niedrogie. W niniejszym przeglądzie omówiono najnowsze osiągnięcia (głównie z lat 2023–2024) w zakresie stosowania różnych DES do usuwania jonów metali i metaloidów oraz barwników syntetycznych z roztworów wodnych przy użyciu ekstrakcji rozpuszczalnikowej (SE) i procesów membranowych (MP). W pracy zawarto również krytyczne uwagi na temat ograniczeń opracowanych metod oraz ich potencjalnego wpływu na środowisko.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 65 poz., rys., wykr.
Twórcy
  • Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
  • Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
Bibliografia
  • 1. Abdussalam-Mohammed, W., Ali, A. Q. & Errayes, A. O. (2020). Green Chemistry: principles, applications, and disadvantages. Chemical Methodologies, 4(4), pp. 408-423. DOI:10.33945/SAMI/CHEMM.2020.4.4
  • 2. Abedpour, H., Moghaddas, J. S., Borhani, M. N. & Borhani, T. N. (2023). Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 53, 103676. DOI:10.1016/j.jwpe.2023.103676
  • 3. Albrektienė-Plačakė, R. & Paliulis, D. (2024) Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
  • 4. Alguacil, F. J. & Robla, J. I. (2022). Solvent extraction in the recovery of metals from solutions: entering the third decade of XXI century. Desalination and Water Treatment, 265, pp. 71-93. DOI:10.5004/dwt.2022.28604
  • 5. Aljumaily, M.M., Ali, N.S., Mahdi, A.E., Alayan, H.M., AlOmar, M., Hameed, M.M., Ismael, B., Alsalhy, Q.F., Alsaadi, M.A., Majdi, H.S. & Mohammed, Z. (2022). Modification of poly(vinylidene fluoride-co-hexafluoropropylene) membranes with DES-functionalized carbon nanospheres for removal of methyl orange by membrane distillation. Water, 14, 9, 1396. DOI:10.3390/w14091396
  • 6. Alqahtani, A. S. (2024) Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis. Journal of Molecular Liquids, 399, 124469. DOI:10.1016/j.molliq.2024.124469
  • 7. Bayabil, H. K., Teshome, F. T., & Li, Y. C. (2022). Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 10, 873499. DOI: 10.3389/fenvs.2022.873499
  • 8. Benkhaya, S., M’rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI:10.1016/j.inochem.2020.107891
  • 9. Białowąs, M., Kończak, B., Chałupnik, S. & Kalka J. (2024). Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal. Archives of Environmental Protection, 50, 1, pp. 19-34. DOI:10.24425/aep.2024.149429
  • 10. Blanco, L., Martínez-Rico, O., Domínguez, Á. & González, B. (2023). Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea deep eutectic solvent and FeO. Water Resources and Industry, 29, 100195. DOI:10.1016/j.wri.2022.100195
  • 11. Blano, L.V., Sas, O.G., Sánchez, P.B., Santiago, Á.D. & de Prado, B.G. (2022). Congo red recovery from water using green extraction solvents. Water Resources and Industry, 27, 100170. DOI:10.1016/j.wri.2021.100170
  • 12. Bratovcic, A. (2023). Recent achievements in photocatalytic degradation of organic water contaminants. Kemija u Industriji, 72, pp. 573−583. DOI:10.15255/KUI.2022.058
  • 13. Chakraborty, G., Bhattarai, A. & De, R. (2022). Polyelectrolyte – Dye interactions: An overview. Polymers, 14, 598. DOI:10.3390/polym14030598
  • 14. Chavan, R.B. Handbook of textile and industrial dyeing. Principles, Processes and Types of Dyes. 16 – Environmentally friendly dyes. Volume 1 in Woodhead Publishing Series in Textiles. 2011, pp. 515-561. DOI:10.1533/9780857093974
  • 15. Chemat, F., Vian, M.A., Fabiano-Tixier, A-S., Nutrizio, M., Jambrak, A.R., Munekata, P.E.S., Lorenzo, J.M., Barba, F.J., Binello, A. & Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22, 2325, pp. 2325-2353. DOI:10.1039/C9GC03878G
  • 16. Chen, K., Dong, H., Ni, Y., Qian, Y., Wang, Y. & Xu, K. (2024). Selective extraction of anionic and cationic dyes using tailored hydrophobic deep eutectic solvents. Talanta, 268, 1, 125312. DOI:10.1016/j.talanta.2023.125312
  • 17. Crema, A. P. S., Schaeffer, N., Bastos, H., Silva, L.P., Abranches, D. O., Passos, H., Hespanhol, M. C. & Coutinho, J.A. P. (2023). New family of type V eutectic solvents based on 1,10-phenanthroline and their application in metal extraction. Hydrometallurgy, 215, 105971. DOI: 10.1016/j.hydromet.2022.105971
  • 18. Cruz, K.A.M.L., Rocha, F.R.P. & Hespanhol, M.C. (2024). Greener route for recovery of high-purity lanthanides from the waste of nickel metal hydride battery using a hydrophobic deep eutectic solvent. ACS Sustainable Chemistry Engineering, 12, 16, 6169–6181. DOI: 10.1021/acssuschemeng.3c07784
  • 19. Date, M. & Jaspal, D. (2024). Dyes and heavy metals: removal, recovery and wastewater reuse - a review. Sustainable Water Resources Management, 10, 90. DOI: 10.1007/s40899-024-01073-8
  • 20. Duque, M., Snajuan, A., Bou-Ali, M.M., Alonso, R.M., Campanero, M.A. (2023). Physicochemical characterization of hydrophobic type III and type V deep eutectic solvents based on carboxylic acids. Journal of Molecular Liquids, 392, 1, 123431. DOI:10.1016/j.molliq.2023.123431
  • 21. Ealias, A. M., Meda, G. & Tanzil, K. (2024). Recent progress in sustainable treatment technologies for the removal of emerging contaminants from wastewater: A review on occurrence, global status and impact on biota. Reviews of Environmental Contamination and Toxicology, 262, 16. DOI: 10.1007/s44169-024-00067-z
  • 22. El Achkar, T., Greige-Gerges, H. & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 19, pp. 3397–3408. DOI: 10.1007/s10311-021-01225-8
  • 23. Feng, F., Wang, M., Zhang, J., Ding, H., Yu, L., Guo, W., Guo, L., Liang, Q., Zhang, Q., Lu, C. & Li, X. (2024). Hydrogen bonding-based deep eutectic solvents for choline chloride/sulfamide and its application in the recycling of precious metals. Journal of Environmental Chemical Engineering, 12(5), 113611. DOI: 10.1016/j.jece.2024.113611.
  • 24. Hassan, M.F., Khan, A.S., Akbar, N., Ibrahim, T.H., Khamis, M.I., Jumean, F.H., Siddiqui, R., Khan, N.A. & Yasir, N. (2022). Efficient extraction of methylene blue from aqueous solution using phosphine-based deep eutectic solvents with carboxylic acid. Processes, 10, 2151. DOI:10.3390/pr10102152
  • 25. Haq, H.U., Wali, A., Safi, F., Arain, M.B., Kong, L. & Boczkaj, G. (2023). Natural deep eutectic solvent based ultrasound assisted liquid-liquid micro-extraction method for methyl violet dye determination in contaminated river water. Water Resources and Industry, 29, 100210. DOI:10.1016/j.wri.2023.100210
  • 26. Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H. & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422, 126778. DOI:10.1016/j.jhazmat.2021.126778
  • 27. Ilame, T. & Ghosh, A. (2022). The promising applications of nanoparticles for synthetic dyes removal from wastewater: recent review. Management of Environmental Quality, 33(2), pp. 451-477. DOI:10.1108/MEQ-07-2021-0179
  • 28. Jeong, C., Ansari, M. H., Anwer, A. H., Kim S. H., Nasar, A., Shoeb, M. & Mashkoor, F. (2023). A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 305, 122416. DOI:10.1016/j.seppur.2022.122416
  • 29. Kaczorowska, M.A. (2022). The use of polymer inclusion membranes for the removal of metal ions from aqueous solutions—the latest achievements and potential industrial applications: a review. Membranes, 12, 1135. DOI:10.3390/membranes12111135
  • 30. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023a). Application of a deep eutectic mixture and ionic liquid as carriers in polymer adsorptive membranes for removal of copper(II) and zinc(II) ions from computer scrap leachates. Desalination and Water Treatment, 316, pp. 505-513. DOI:10.5004/dwt.2023.30166
  • 31. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023b). The application of polymer inclusion membranes for the removal of emerging contaminants and synthetic dyes from aqueous solutions - A mini review. Membranes, 13, 132. DOI:10.3390/membranes1302013
  • 32. Khodabandeloo, F., Shahsavarifar, S., Nayebi, B. Niavol, K.P., Nayebi, B., Varma, R.S., Cha, J.H., Jang, H.W., Kim, D. & Shokouhimehr, M. (2023). Application of nanostructured semiconductor photocatalysts for the decontamination of assorted pollutants from wastewater. Inorganic Chemistry Communication, 157, 111357. DOI:10.1016/j.inoche.2023.111357
  • 33. Kizil, N., Erbilgin, D.E., Yola, M.L. & Soylak, M. (2024). An environmentally friendly hydrophobic deep eutectic solvent dispersive liquid liquid microextraction for spectrophotometric analysis of indigo carmine (E132). Optical and Quantum Electronics, 56, 341. DOI:10.1007/s11082-023-05964-6
  • 34. Kumar, G., Kumar, K. & Bharti, A. (2024). Quantum chemistry-based approach for density prediction of non-ionic hydrophobic eutectic solvents. Journal of Solution Chemistry, 53, pp.1195–1210. DOI:10.1007/s10953-024-01372-w
  • 35. Kunasekaran, K., Harikumar, N. S. & Ramalingam, A. (2024). Volumetric investigation of Cu(II) And Hg(II) aqueous mixtures with {tetrabutylammonium bromide plus glycerol (1:3)} deep eutectic solvents and extraction performances of {tetrabutylammonium bromide plus capric acid/oleic acid} over divalent (Cu and Hg) heavy metals. Journal of Chemical & Engineering Data, 69(3), pp. 1188-1218. DOI:10.1021/acs.jced.3c00770
  • 36. Kurtulbaş, E., Ciğeroğlu, Z., Şahin, S., El Messaoudi, N. & Mehmeti V. (2024). Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. International Journal of Biological Macromolecules, 274, 1, 133378. DOI:10.1016/j.ijbiomac.2024.133378
  • 37. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49, 1 pp. 47–56. DOI 10.24425/aep.2023.144736
  • 38. Liu, J., Chen, B., Huang, Y., Cao, Y., Chen, J., Wang, L., Liu, Y. & Fan, Y. (2024). Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent. Separation and Purification Technology, 347, 127576. DOI:10.1016/j.seppur.2024.127576
  • 39. Liu, L., Zhu, G., Huang, Q., Yin, C., Jiang, X., Yang, X. & Xie, Q. (2021). Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. Journal of Molecular Liquids, 343, 117670. DOI:10.1016/j.molliq.2021.117670.
  • 40. Mafakheri, N., Shamsipur, M. & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples, Microchemical Journal, 199, 110010. DOI:10.1016/j.microc.2024.110010
  • 41. Majidi, E. & Bakhshi, H. (2024). Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media, Journal of Water Process Engineering, 57, 104680. DOI:10.1016/j.jwpe.2023.104680.
  • 42. Martín, M. I., García-Díaz, I. & López, F. A. (2023). Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Minerals Engineering, 203, 108306. DOI:10.1016/j.mineng.2023.108306
  • 43. Martínez-Rico, Ó., Asla, A., Domínguez, Á. & González, B. (2024). Reversible dye extraction from aqueous matrices using ammonium salt-based deep eutectic solvents. Separation and Purification Technology, 335, 126208. DOI:10.1016/j.seppur.2023.126208
  • 44. Moody, V. & Needles, H.L. (2004). Tufted Carpet. Textile fibers, dyes, finishes, and processes. William Andrew, Norwich, pp. 155-175.
  • 45. Nejrotti, S., Antenucci, A., Pontremoli, C., Gontrani, L., Barbero, N., Carbone, M. & Bonomo, M. (2022). Critical assessment of the sustainability of deep eutectic solvents: A case study on six choline chloride-based mixtures. ACS Omega, 7, 51, pp. 47449–47461. DOI:10.1021/acsomega.2c06140
  • 46. Nithya, R., Thirunavukkarasu, A., Sathya, A.B. & Sivashankar, R. (2021). Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environmental Chemistry Letters, 19, pp. 1275-1294. DOI:10.1007/s10311-020-01149-9
  • 47. Ola, P. D. & Matsumoto, M. (2024). Extraction of Au(III), Pt(IV), and Pd(II) from aqueous media with deep eutectic solvent dissolved in n-heptane as extractant. Indonesian Journal of Chemistry, 23, 6, pp.1735-1741. DOI:10.22146/ijc.80862
  • 48. Omar, K.A. & Sadeghi, R. (2022). Hydrophobic deep eutectic solvents: thermo-physical characteristic and their application in liquid-liquid extraction. Journal of the Iranian Chemical Society, 19, pp. 3529-3537. DOI:10.1007/s13738-022-02547-2
  • 49. Patel, D., Suthar, K. J., Balsora, H. K., Patel, D., Panda, S. R. & Bhavsar, N. (2024). Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach. Asia-Pacific Journal of Chemical Engineering, e3151. DOI:10.1002/apj.3151
  • 50. Prabhune, A. & Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379, 121676. DOI:10.1016/j.molliq.2023.121676.
  • 51. Rao, H.S.P. (2023). Deep eutectic solvents. Resonance, 28, pp. 1865–1874. DOI:10.1007/s12045-023-1724-z
  • 52. Santana-Mayor, A., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Socas-Rodríguez, B., & Rodríguez-Delgado, M.A. (2021). Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends in Analytical Chemistry, 134, 116108. DOI:10.1016/j.trac.2020.116108.
  • 53. Santhosh, K.N., Samage, A., Mahadevaprasad, K.N., Aditya, D.S., Jayapandi, S., Yoon, H. & Nataraj, S.K. (2024). Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials. Chemical Engineering Journal, 484, 149747. DOI:10.1016/j.cej.2024.149747
  • 54. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y. & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9, 4, 105688. DOI:10.1016/j.jece.2021.105688.
  • 55. Shuping, C., Zhihan, Z., Dong, W., Wenjing, Z., Tao, Q., Zhi, W., Wanhai, X., Yong, L. & Guobiao, L. (2025). Selective leaching and recovery of rare earth from NdFeB waste through a superior selective and stable deep eutectic solvent. Separation and Purification Technology, Part B, 353, 128498. DOI:10.1016/j.seppur.2024.128498.
  • 56. Słupek, E., Makoś, P. & Gębicki, J. (2020). Deodorization of model biogas by means of novel non-ionic deep eutectic solvent. Archives of Environmental Protection, 46, 1, pp. 41–46. DOI:10.24425/aep.2020.132524
  • 57. Sriram, G., Bendre, A., Mariappan, E., Altalhi, T., Kigga, M., Ching, Y.C., Jung, H-Y., Bhaduri, B. & Kurkuri, M. (2022). Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 31, 300378. DOI:10.1016/j.susmat.2021.e00378
  • 58. Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S. & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26, pp. 8303–8327. DOI:10.1007/s10668-023-03117-z
  • 59. Viyanni, P.M. & Sethuraman, M.G. (2024). Electrodeposition of NiCo on stainless steel substrate using deep eutectic solvent for efficient hydrogen evolution and methanol oxidation reactions. Journal of Electroanalytical Chemistry, 967, 118471. DOI:10.1016/j.jelechem.2024.118471
  • 60. Wang, B., Wang, Y. & Xu, T. (2023). Recent advances in the selective transport and recovery of metal ions using polymer inclusion membranes. Advanced Materials Technologies, 8, 22, 2300829. DOI:10.1002/admt.202300829
  • 61. Wang, C. & Hua, E. (2024). Extraction of metal ions using novel deep eutectic solvents with chelating amine. Journal of Solution Chemistry, 53, pp. 1340–1352. DOI:10.1007/s10953-024-01378-4
  • 62. Yasir, N., Khan, A.S., Akbar, N., Hassan, M.F., Ibrahim, T.H., Khamis, M., Siddiqui, R., Khan, N.A. & Nancarrow, P. (2022). Amine-based deep eutectic solvents for alizarin extraction from aqueous media. Processes, 10, 794. DOI:10.3390/pr10040794
  • 63. Zahid, M., Ahmad, H., Drioli, E., Rehan, Z.A., Rashid, A., Akram, S. & Khalid, T. (2021). Role of polymeric nanocomposite membranes for the removal of textile dyes from wastewater. Aquananotechnology, Application of Nanomaterials for Water Purification, pp. 91-103. DOI:10.1016/B978-0-12-821141-0.00006-9
  • 64. Zhang, H., Zheng, Y., Wang, H. & Chang, N. (2024). Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater. Polymer Bulletin, 81, pp. 2777-2800. DOI:10.1007/s00289-023-04864-9
  • 65. Zhao, Q., Wu, F., Shih, A. A., Fung, C. K., Gao, P. Y. & Liu, M. X. (2024). Enhancing separation of Y(III) from Sr(II) using tributyl phosphate in a novel deep eutectic solvent media. The American Institute of Chemical Engineers Journal, e18552. DOI:10.1002/aic.18552
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9dbb7e0f-6459-4b7f-be6a-fa6cd51fdaa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.