PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free vibration analysis of functionally graded rectangular nanoplates considering spatial variation of the nonlocal parameter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a new nonlocal elasticity-based analysis method for free vibrations of functionally graded rectangular nanoplates. The introduced method allows taking into account spatial variation of the nonlocal parameter. Governing partial differential equations and associated boundary conditions are derived by employing the variational approach and applying Hamilton’s principle. Displacement field is expressed in a unified way to be able to produce numerical results pertaining to three different plate theories, namely Kirchhoff, Mindlin, and third-order shear deformation theories. The equations are solved numerically by means of the generalized differentia quadrature method. Numerical results are generated by considering simply-supported and cantilever nanoplates undergoing free vibrations. These findings demonstrate the influences of factors such as dimensionless plate length, plate theory, power-law index, and nonlocal parameter ratio upon vibration behavior.
Rocznik
Strony
105--130
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
  • Department of Mechanical Engineering Middle East Technical University Ankara 06800, Turkey
autor
  • Department of Mechanical Engineering Middle East Technical University Ankara 06800, Turkey
autor
  • Department of Mechanical Engineering Middle East Technical University Ankara 06800, Turkey
Bibliografia
  • 1. Y. Fu, H. Du, S. Zhang, Functionally graded TiN/TiNi shape memory alloy films, Mater. Lett., 57, 2995–2999, 2003.
  • 2. A.M.A. Witvrouw, A. Mehta, The use of functionally graded poly-SiGe layers for MEMS application, Mater. Sci. Forum., 492–493, 255–260, 2005.
  • 3. H. Hassanin, K. Jiang, Net shape manufacturing of ceramic micro parts with tailored graded layers, J. Micromechanics Microengineering, 24, Paper No.: 015018, 2014.
  • 4. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10, 233–248, 1972.
  • 5. A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1–16, 1972.
  • 6. E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fracture, 95, 299–314, 1999.
  • 7. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, [in:] W.H. John, Y.W. Theodore (Eds.), Advances in Applied Mechanics, 33, 299–314, 1997.
  • 8. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245–2271, 2001.
  • 9. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477–1508, 2003.
  • 10. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415–448, 1962.
  • 11. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731–2743, 2002.
  • 12. I. Eshraghi, S. Dag, N. Soltani, Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading, Compos. Struct., 137, 196–207, 2016.
  • 13. O. Rahmani, O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci., 77, 55–70, 2014.
  • 14. F. Ebrahimi, M. Barati, A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams, Arab. J. Sci. Eng., 41, 1–12, 2015.
  • 15. M. Simsek, H.H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Compos. Struct., 97, 378–386, 2013.
  • 16. O. Rahmani, A.A. Jandaghian, Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory, Appl. Phys. A., 119, 1019–1032, 2015.
  • 17. R. Nazemnezhad, S. Hosseini-Hashemi, Nonlocal nonlinear free vibration of functionally graded nanobeams, Compos. Struct., 110, 192–199, 2014.
  • 18. S. Hosseini-Hashemi, R. Nazemnezhad, M. Bedroud, Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity, Appl. Math. Model., 38, 3538–3553, 2014.
  • 19. B. Uymaz, Forced vibration analysis of functionally graded beams using nonlocal elasticity, Compos. Struct., 105, 227–239, 2013.
  • 20. F. Ebrahimi, E. Salari, Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronaut., 113, 29–50, 2015.
  • 21. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., 218, 7406–7420, 2012.
  • 22. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 96, 82–88, 2013.
  • 23. M.A. Eltaher, A. Khairy, A.M. Sadoun, F.A. Omar, Static and buckling analysis of functionally graded Timoshenko nanobeams, Appl. Math. Comput., 229, 283–295, 2014.
  • 24. J.N. Reddy, S. El-Borgi, J. Romanoff, Non-linear analysis of functionally graded microbeams using Eringen’s non-local differential model, Int. J. Nonlinear Mech., 67, 308–318, 2014.
  • 25. M. Zare, R. Nazemnezhad, S. Hosseini-Hashemi, Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method, Meccanica, 50, 2391–2408, 2015.
  • 26. S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Comput. Mater. Sci., 65, 74–80, 2012.
  • 27. M.R. Nami, M. Janghorban, Free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory, Iran. J. Sci. Technol. Trans. Mech. Eng., 39, 15–28, 2015.
  • 28. A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, Int. J. Eng. Sci., 95, 23–35, 2015.
  • 29. A. Daneshmehr, A. Rajabpoor, M. Pourdavood, Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions, Int. J. Eng. Sci., 82, 84–100, 2014.
  • 30. M.R. Nami, M. Janghorban, M. Damadam, Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory, Aerosp. Sci. Technol., 41, 7–15, 2015.
  • 31. H. Kananipour, Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM, Lat. Am. J. Solids Struct., 11, 1709–1720, 2014.
  • 32. H. Salehipour, H. Nahvi, A.R. Shahidi, Closed-form elasticity solution for three-dimensional deformation of functionally graded micro/nano plates on elastic foundation, Lat. Am. J. Solids Struct., 12, 747–762, 2015.
  • 33. H. Salehipour, H. Nahvi, A.R. Shahidi, Exact analytical solution for free vibration of functionally graded micro/nanoplates via three-dimensional nonlocal elasticity, Phys. E Low-Dimensional Syst. Nanostructures, 66, 350–358, 2015.
  • 34. R. Ansari, M. Faghih Shojaei, A. Shahabodini, M. Bazdid-Vahdati, Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach, Compos. Struct., 131, 753–764, 2015.
  • 35. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Method Appl. M., 194, 4135–4195, 2005.
  • 36. S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Comp. Mater. Sci., 65, 74–80, 2012.
  • 37. N.-T. Nguyen, D. Hui, J. Lee, H. Nguyen-Tuan, An efficient computational approach for size-dependent analysis of functionally graded nanoplates, Comput. Method Appl. M., 297, 191–218, 2015.
  • 38. R. Ansari, A. Norouzzadeh, Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis, Physica E: Low-dimensional Systems and Nanostructures, 84, 84–97, 2016.
  • 39. H. Nguyen-Xuan, L.V. Tran, C.H. Thai, S. Kulasegaram, S.P.A. Bordas, Iso-geometric analysis of functionally graded plates using a refined plate theory, Compos. Part B: Eng., 64, 222–234, 2014.
  • 40. S.A. Farzam-Rad, B. Hassani, A. Karamodin, Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface, Compos. Part B: Eng., 108, 174–189, 2017.
  • 41. T. Yu, S. Yin, T.Q. Bui, C. Liu, N. Wattanasakulpong, Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads, Compos. Struct., 162, 54–69, 2017.
  • 42. Y. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, Eur. J. Mech. – A/Solids, 45, 153–160, 2014.
  • 43. R. Aghazadeh, E. Cigeroglu, S. Dag, Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories, Eur. J. Mech. – A/Solids, 46, 1–11, 2014.
  • 44. I. Eshraghi, S. Dag, N. Soltani, Consideration of spatial variation of the length scale parameter in static and dynamic analyses of functionally graded annular and circular micro-plates, Compos. Part B: Eng., 78, 338–348, 2015.
  • 45. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703–4710, 1983.
  • 46. E. Ghavanloo, S.A. Fazelzadeh, Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality, Meccanica, 51, 41–54, 2016.
  • 47. R. Ansari, S. Sahmani, Small-scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Commun. Nonlinear. Sci., 17, 1965–1979, 2012.
  • 48. R. Ansari, H. Rouhi, S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics, Int. J. Mech. Sci., 53, 786–792, 2011.
  • 49. R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Phys. Lett. A, 375, 53–62, 2010.
  • 50. A.M. van der Zande, R.A. Barton, J.S. Alden, C.S. Ruiz-Vargas, W.S. Whitney, P.H.Q. Pham, J. Park, J.M. Parpia, H.G. Craighead, P.L. McEuen, Large-scale arrays of single-layer graphene resonators, Nano Lett., 10, 4869–4873, 2010.
  • 51. Y. Yuasa, A. Yoshinaka, T. Arie, S. Akita, Visualization of vibrating cantilevered multilayer graphene mechanical oscillator, Appl. Phys. Express, 4, Paper No.: 115103, 2011.
  • 52. H. Du, M.K. Lim, R.M. Lin, Application of generalized differential quadrature method to structural problems, Int. J. Numer. Methods Eng., 37, 1881–1896, 1994.
  • 53. C. Shu, Differential Quadrature and Its Application in Engineering, Springer, London, 2012.
  • 54. C.M.Wang, J.N. Reddy, K.H. Lee, Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Oxford, 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9db64366-2d1c-483d-b4e5-ed1fb1c7c2a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.