PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka mikrostruktury pianobetonu o różnych gęstościach przy zastosowaniu technik mikroskopowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Microstructural characterization of foamed concrete with different densities using microscopic techniques
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono wyniki badań próbek pianobetonów z użyciem skaningowej mikroskopii elektronowej oraz mikrotomografii rentgenowskiej. Scharakteryzowano porowatość oraz właściwości matrycy cementowej betonów po różnych czasach dojrzewania. Gęstość decyduje w pierwszej kolejności o mikrostrukturze matrycy cementowej, a co za tym idzie właściwości pianobetonów. Jak można się było spodziewać, matryca cementowa jest bardziej zwarta w pianobetonach o większej gęstości i dojrzewających przez dłuższy okres. Średnica porów zmniejsza się, wraz ze zwiększaniem się gęstości betonów i jest bardziej stabilna w późniejszych okresach.
EN
In this paper a set of foamed concrete specimens with different densities was prepared, and microscopic techniques such as scanning electron microscopy and X-ray micro-computed tomography were used to characterize the specimens. The pore and solid characteristics of the foamed concrete at different ages were also examined to investigate the effect of aging on the materials. The microstructure of cement matrix and thus the properties of foamed concrete are strongly affected by the density of concrete. As it should be expected, the cement matrix is denser in concrete of higher density and concrete cured for longer period. The pore size distribution of the foamed concrete shows the tendency to be composed of smaller pores as the density of the specimens is increasing and to became more stable after longer curing period.
Czasopismo
Rocznik
Strony
216--225
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Germany
autor
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Germany
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Germany
  • Structural Engineering Department, Mansoura University, Egypt
autor
  • Building Materials and Construction Chemistry, Technische Universität Berlin, Germany
Bibliografia
  • 1. P. K. Mehta, P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials (4th ed.), McGraw-Hill Education, USA, 2013.
  • 2. A. M. Neville, Properties of concrete (5th ed.), Pearson Education, England, 2012.
  • 3. S.-Y. Chung, M. A. Elrahman, P. Sikora, T. Rucinska, E. Horszczaruk, D. Stephan, Evaluation of the effects of crushed and expanded waste glass aggregates on the material properties of lightweight concrete using imagebased approaches, Materials 10 1354 (2017).
  • 4. K. Ramamurthy, E. K. Nambiar, G. Ranjani, A classification of studies on properties of foam concrete, Cem. Concr. Comp. 31, 388–396 (2009).
  • 5. Y. H. Amran, N. Farzadnia, A. A. Ali, Properties and applications of foamed concrete; a review, Constr. Build. Mater. 101, 990–1005 (2015).
  • 6. K.-H. Yang, C.-W. Lo, J.-S. Huang, Production and properties of foamed reservoir sludge inorganic polymers, Constr. Build. Mater. 50, 421–431 (2014).
  • 7. A. Hilal, N. H. Thom, A. R. Dawson, On void structure and strength of foamed concrete made without/with additives, Constr. Build. Mat. 85, 157–164 (2015).
  • 8. Z. Zhang, J. L. Provis, A. Reid, H. Wang, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Comp. 62, 97–105 (2015).
  • 9. A. A. Sayadi, J. V. Tapia, T. R. Neitzert, G. C. Clifton, Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete, Constr. Build. Mater. 112, 716–724 (2016).
  • 10. E. P. Kearsley, P. J. Wainwright, The effect of porosity on the strength of foamed concrete, Cem. Concr. Res. 32, 233–239 (2002).
  • 11. S. Wei, C. Yiqiang, Z. Yunsheng, M. R. Jones, Characterization and simulation of microstructure and thermal properties of foamed concrete, Constr. Build. Mater. 47, 1278–1291 (2013).
  • 12. A. A. Hilal, N. H. Thom, A. R. Dawson, On entrained pore size distribution of foamed concrete, Constr. Build. Mater. 75, 227–233 (2015).
  • 13. S. K. Lim, C. S. Tan, O. Y. Lim, Y. L. Lee, Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler, Constr. Build. Mater. 46, 39–47 (2013).
  • 14. P. Zhihua, L. Hengzhi, L. Weiqing, Preparation and characterization of super low density foamed concrete from Portland cement and admixtures, Constr. Build. Mater. 72, 256–261 (2014).
  • 15. J. Jiang, Z. Lu, Y. Niu, J. Li, Y. Zhang, Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement, Mater. Des. 92, 949–959 (2016).
  • 16. P. Stutzman, Scanning electron microscopy imaging of hydraulic cement microstructure, Cem. Concr. Comp. 26 957–066 (2004).
  • 17. B. Gael, T. Christelle, E. Gilles, G. Sandrine, S.-F. Tristan, Determination of the proportion of anhydrous cement using SEM image analysis, Constr. Build. Mater. 126, 157–164 (2016).
  • 18. B. M. Patterson, J. P. Escobedo-Diaz, D. Dennis-Koller, E. Cerreta, Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomography, Microsc. Microanal. 18, 390– 398 (2012).
  • 19. S.-Y. Chung, M. A. Elrahman, D. Stephan, P. H. Kamm, Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography, Constr. Build. Mater. 118, 204–215 (2016).
  • 20. K. Natesaiyer, C. Chan, S. Sinha-Ray, D. Song, C. L. Lin, J. D. Miller, E. J. Garboczi, A. M. Forster, X–ray ct imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: insights into foam variability, J. Mat. Science 50, 4012–4024 (2015).
  • 21. N. Otsu, A threshold selection method from gray-level histograms, Man and Cybernetics, 62–66 (1979).
  • 22. F. Cui, X. L. Wang, S. Peng, C. Vogel, A parallel algorithm for Quasi Euclidean distance transform, Journal of Image and Graphics 6, 009 (2004).
  • 23. D. Gastaldi, F. Canonico, L. Capelli, E. Boccaleri, M. Milanesio, L. Palin, G. Croce, F. Marone, K. Mader, M. Stampanoni, In situ tomographic investigation on the early hydration behaviors of cementing systems, Constr. Build. Mater. 29, 284–290 (2012).
  • 24. M. Parisatto, M. C. Dalconi, L. Valentini, G. Artioli, A. Rack, R. Tucoulou, G. Cruciani, G. Ferrari, Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography, Mater. Struct. 50, 1805–1817 (2015).
  • 25. S.-Y. Chung, T.-S. Han, S.-Y. Kim, J.-H. J. Kim, K. S. Youm, J.-H. Lim, Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions, Cem. Concr. Comp. 65, 150–162 (2016).
  • 26. X. Lui, K. S. Chia, M.-H. Zhang, Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete, Constr. Build. Mater. 25, 335–343 (2011).
  • 27. Q. L. Yu, P. Spiesz, H. J. H. Brouwers, Ultra-lightweight concrete: Conceptual design and performance evaluation, Cem. Concr. Comp. 61, 18–28 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9db30592-0832-493e-bbf4-49e5803c94e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.