PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pioneer colonization, evidenced by Rhizocorallium in the Middle Triassic of Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A large collection of the trace fossil Rhizocorallium from the Middle Triassic of the Polish part of the Germanic Basin (Peri-Tethys) is analysed and their ichnotaxonomical classification presented. Special attention is given to the deep form of Rhizocorallium with a vertical retrusive spreite, filled with faecal pellets, with detailed documentation of this structure, based on isolated specimens and serial sections. This analysis also reveals ∩-shaped and deep, protrusive structures. A former interpretation of Rhizocorallium as a rapidly formed fugichnion is not followed here; instead, an interpretation of the trace fossil as a complex fodinichnion is proposed. Scavengers and their relation to crinoid meadows, as well as predators, are indicated as potential tracemakers of some Rhizocorallium. Although Rhizocorallium is common throughout the Middle Triassic, unusual forms and the domination of substrates by Rhizocorallium in general mostly occur in the transgressive system of the lowermost Muschelkalk, and in regressive, marginal facies of the lower Keuper. Such a distribution of unusual forms of Rhizocorallium is interpreted as representing opportunistic, pioneer burrow assemblages that developed during the long-term benthic recovery after the P-T crisis, or in unfavourable conditions generally. Moreover, dynamic conditions with mixed clastic-carbonate sedimentation and rapidly varying salinity promoted smooth transitions from Rhizocorallium to Diplocraterion. Similar successions of dominant trace-fossil assemblages, of comparable sizes, occur in many sections around the world and demonstrate the record of slow recovery that continued through the Middle Triassic. The illustrated record of evolution of the Middle Triassic Rhizocorallium assemblages in Poland documents the last two stages of benthos recovery after the P-T boundary. A similar situation is observed around the world and, in many cases, great abundance of Rhizocorallium seems to be an indication of pioneer burrowing in dynamic, unfavourable environments.
Rocznik
Strony
363--379
Opis fizyczny
Bibliogr. 80 poz., fot., wykr.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
Bibliografia
  • 1. Antczak, M., Ruciński, M. R., Stachacz, M., Matysik, M. & Król, J. J., 2020. Diversity of vertebrate remains from the Lower Gogolin Beds (Anisian) of southern Poland. Annales Societatis Geologorum Poloniae, 90: 419-433.
  • 2. Assmann, P., 1944. Die Stratigraphie der oberschlesischen Trias. Teil II - Der Muschelkalk. Abhandlungen des Reichsamts für Bodenforschung, 208: 1-124.
  • 3. Bayet-Goll, A., Neto de Carvalho, C., Daraei, M., Monaco, P. & Sharafi, M., 2018. Sequence stratigraphic and sedimentologic significance of the trace fossil Rhizocorallium in the Upper Triassic Nayband Formation, Tabas Block, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 196-217.
  • 4. Bhattacharya, B. & Bhattacharya, H. N., 2007. Implications of trace fossil assemblages from late Paleozoic glaciomar- ine Talchir Formation, Raniganj Basin, India. Gondwana Research, 12: 509-524.
  • 5. Bodzioch, A., 2005. Biogeochemical diagenesis of the Lower Mushelkalk of Opole Region. Wydawnictwo Naukowe UAM, Poznań, 130 pp. [In Polish, with English abstract.]
  • 6. Bodzioch, A. & Kowal-Linka, M., 2001. Occurrence and origin of pseudomorphs after sulphate minerals from the Lower Muschelkalk (Middle Triassic) of Upper Silesia (Poland). Zeitschrift für geologische Wissenschaften, 29: 109-118.
  • 7. Bromley, R. G. & Hanken, N.-M., 2003. Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 192: 79-100.
  • 8. Buatois, L. A. & Mángano, M. G., 2011. Ichnology. Organism-Substrate Interactions in Space and Time. Cambridge University Press, Cambridge, 358 pp.
  • 9. Buckman, J. O., 1994. Rhizocorallium Zenker 1836 not Teichichnus repandus Chamberlain 1977. Ichnos, 3: 135-136.
  • 10. Chamberlain, C. K., 1977. Ordovician and Devonian trace fossils from Nevada. Nevada Bureau of Mines and Geology Bulletin, 90: 1-24.
  • 11. Chen, Z. Q. & Benton, M. J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5: 375-383.
  • 12. Chen, Z. Q., Tong, J. N. & Fraiser, M. L., 2011. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 449-474.
  • 13. Chisholm, J. I., 1970. Teichichnus and related trace-fossils in the Lower Carboniferous at St. Monance, Scotland. Bulletin of the Geological Survey of Great Britain, 32: 21-51.
  • 14. Chrząstek, A., 2013. Trace fossils from the Lower Muchelkalk of Raciborowice Górne (North Sudetic Synclinorium, SW Poland) and their palaeoenvironmental interpretation. Acta Geologica Polonica, 3: 315-353.
  • 15. Dott, H., R., Jr., 1983. 1982 SEPM Presidential Address: Episodic sedimentation - How normal is average? How rare is rare? Does it matter? Journal of Sedimentary Petrology, 53: 5-23.
  • 16. Feng, X., Chen, Z., Bottjer, D. J., Fraiser, M. L., Xu, Y. & Luo, M., 2018. Additional records of ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for biotic recovery after the end-Permian mass extinction. Geological Society of America Bulletin, 130: 1197-1215.
  • 17. Feng, X. Q., Chen, Z. Q., Woods, A. & Fang, Y. H., 2017a. A Smithian (Early Triassic) ichnoassemblage from Lichuan, Hubei Province, South China: implications for biotic recovery after the latest Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 123-141.
  • 18. Feng, X., Chen, Z.-Q., Woods, A., Pei, Y., Wu, S., Fang, Y., Luo, M. & Xu, Y., 2017b. Anisian (Middle Triassic) marine ichnocoenoses from the eastern and western margins of the Kamdian Continent, Yunnan Province, SW China: implications for the Triassic biotic recovery. Global and Planetary Change, 157: 194-213.
  • 19. Firtion, F., 1958. Sur la présence d'ichnites dans le Portlandien de l'Ile d'Oléron (Charente maritime). Annales Universitatis Saraviensis (Naturwissenschaften), 7: 107-112.
  • 20. Fraiser, M. L. & Bottjer, D. J., 2009. Opportunistic behavior of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction. Australian Journal of Earth Sciences, 56: 841-857.
  • 21. Frey, R. W. & Seilacher, A., 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13: 183-207.
  • 22. Fuchs, T., 1895. Studien über Fucoiden und Hieroglyphen. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe, 62: 369448.
  • 23. Fürsich, F. T., 1974. Ichnogenus Rhizocorallium. Paläontologische Zeitschrift, 48: 16-28.
  • 24. Fürsich, F. T., 1981. Invertebrate trace fossils from the Upper Jurassic of Portugal. Communicaęoes dos Servięos Geolo- gicós de Portugal, 67: 153-168.
  • 25. Gümbel, C. W., 1861. Geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes. Justus Perthes, Gotha, 950 pp.
  • 26. Hall, J., 1843. Geology of New York. Part 4. Comprising the Survey of the Fourth Geological District. Carroll and Cook, Albany, 525 pp.
  • 27. Hecker, R. F., 1980. Sledy bespozvonochnykh i stigmarii v morskikh otlozheniyakh nizhnego karbona moskovskoj sineklizy. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 178: 1-78. [In Russian.]
  • 28. International Commission on Zoological Nomenclature, 1999. International Code of Zoological Nomenclature, Adopted by the International Union of Biological Sciences, Fourth edition. International Trust for Zoological Nomenclature, London, 232 pp.
  • 29. Jaglarz, P. & Uchman, A. 2010. A hypersaline ichnoassem- blage from the Middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, southern Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 292: 71-81.
  • 30. Knaust, D., 2004. The oldest Mesozoic nearshore Zoophycos: evidence from the German Triassic. Lethaia, 37: 297-306.
  • 31. Knaust, D., 2007. Invertebrate trace fossils and ichnodiversity in shallow-marine carbonates of the German Middle Triassic (Muschelkalk). In: Bromley R. G., Buatois, L. A., Mángano, M. G., Genise, J. F. & Melchor, R. N. (eds), Sediment-Organism Interaction: a Multifaceted Ichnology. SEPM Special Publication, 88: 221-238.
  • 32. Knaust, D., 2010. The end-Permian mass extinction and its aftermath on an equatorial carbonate platform: Insights from ichnology. Terra Nova, 22: 195-202.
  • 33. Knaust, D., 2013. The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution. Earth- Science Reviews, 126: 1-47.
  • 34. Knaust, D. & Costamagna, L. G., 2012. Ichnology and sedimen- tology of the Triassic carbonates of north-west Sardinia, Italy. Sedimentology, 59: 1190-1207.
  • 35. Kotlarczyk, J. & Uchman, A., 2012. Integrated ichnology and ichthyology of the Oligocene Menilite Formation, Skole and Subsilesian nappes, Polish Carpathians: a proxy to oxygenation history. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 104-118.
  • 36. Kotlicki, S. 1974a. Stratigraphic position of the Triassic sediments in the Upper Silesian Region. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences de la Terre, 22: 161-166.
  • 37. Kotlicki, S. 1974b. Laryszów - wykształcenie i pozycja stratygraficzna górnego wapienia muszlowego. Warstwy boruszowickie. Problem górnej granicy stratygraficznej triasu środkowego. In: Rutkowski J. (ed.), Przewodnik 46. Zjazdu Polskiego Towarzystwa Geologicznego, Opole, 12-14 września 1974. Wydawnictwa Geologiczne, Warszawa, pp. 172176. [In Polish.]
  • 38. Kowal-Linka, M. & Bodzioch, A., 2011. Sedimentological implications of an unusual form of the trace fossils Rhizocorallium from the Lower Muschelkalk (Middle Triassic), S. Poland. Facies, 57: 695-703.
  • 39. Książkiewicz, M., 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica, 36: 1-208.
  • 40. Luo, M., Shi, G. R., Buatois, L. A. & Chen, Z. Q., 2020. Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: a critical review. Earth Science Reviews, 203: 103059.
  • 41. Luo, M., George, A. D. & Chen, Z. Q., 2016. Sedimentology and ichnology of two Lower Triassic sections in South China: implications for the biotic recovery following the end-Permian mass extinction. Global and Planetary Change, 144: 198-212.
  • 42. Luo, M., Shi, G. R., Hu, S., Benton, M. J., Zhong-Qiang, C., Jinyuan, H., Qiyue, Z., Changyong, Z. & Wen, W., 2017. Early Middle Triassic trace fossils from the Luoping Biota, southwestern China: evidence of recovery from mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 6-22.
  • 43. MacEachern, J. A., Bann, K. L., Gingras, M. K., Zonneveld, J.-P., Dashtgard, S. E. & Pemberton, S. G., 2012. The ichnofacies paradigm. In: Knaust, D. & Bromley, R. G. (eds), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64: 103-138.
  • 44. Matysik, M., 2016. Facies types and depositional environments of a morphologically diverse carbonate platform: a case study from the Muschelkalk (Middle Triassic) of Upper Silesia, southern Poland. Annales Societatis Geologorum Poloniae, 86: 119-164.
  • 45. Matysik, M., 2019. High-frequency depositional cycles in the Muschelkalk (Middle Triassic) of southern Poland: origin and implications for Germanic Basin astrochronological scales. Sedimentary Geology, 383: 159-180.
  • 46. Matysik, M., Stachacz, M., Knaust, D. & Whitehouse, M., 2022. Geochemistry, ichnology, and sedimentology of omission levels in Middle Triassic (Muschelkalk) platform carbonates of the Germanic Basin (southern Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110732.
  • 47. Matysik, M. & Szulc, J., 2019. Shallow-marine carbonate sedimentation in a tectonically mobile basin, the Muschelkalk (Middle Triassic) of Upper Silesia (southern Poland). Marine and Petroleum Geology, 107: 99-115.
  • 48. Mayer, G., 1952. Neue Lebensspuren aus dem Unteren Hauptmuschelkalk (Trochitenkalk) von Wiesloch: Coprulus oblongus n. sp. und C. sphaeroideus n. sp. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1952: 376-379.
  • 49. Mayer, G., 1954. Ein neues Rhizocorallium aus dem Mittleren Hauptmuschelkalk von Bruchsal. Beiträge zur naturkundlichen Forschung in Südwestdeutschland, 13: 80-83.
  • 50. Mørk, A. & Bromley, R. G., 2008, Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Research, 27: 339-359.
  • 51. Nawrocki, J. & Szulc, J., 2000. The Middle Triassic magnetostratigraphy from the Peri-Tethys Basin in Poland. Earth and Planetary Science Letters, 182: 77-92.
  • 52. Pan, Y.-Y., Nara, M., Löwemark, L., Miguez-Salas, O., Gunnar- son, B., Iizuka, Y., Chen, T.-T. & Dashtgard, S. E., 2021. The 20-million-year old lair of an ambush-predatory worm preserved in northeast Taiwan. Scientific Reports, 11: 1174.
  • 53. Pawlak, W., Rozwalak, P. & Sulej, T., 2022. Triassic fish faunas from Miedary (Upper Silesia, Poland) and their implications for understanding paleosalinity. Palaeogeography, Palaeoclimatology, Palaeoecology, 590: 110860.
  • 54. Pollard, J. E., 1981. A comparison between the Triassic trace fossils of Cheshire and south Germany. Palaeontology, 24: 86-90.
  • 55. Pruss, S. B. & Bottjer, D. J., 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19: 551-564.
  • 56. Richter, R., 1926. Flachseebeobachtungen zur Paläontologie und Geologie XII. Bau, Begriff und paläogeographische Bedeutung von Corophioides luniformis (Blanckenhorn, 1917). Senckenbergiana, 8: 200-219.
  • 57. Rodríguez-Tovar, F. J., Buatois, L. A., Pifluela, L., Mángano, M. G. & García-Ramos, J. C., 2012. Palaeoenvironmental and functional interpretation of Rhizocorallium jenense spinosus (ich- nosubsp. nov.) from the lower Jurassic of Asturias, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341: 114-120.
  • 58. Rodríguez-Tovar, F. J. & Perez-Valera, F., 2008. Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, southern Spain: characterization and environmental implications. Palaios, 23: 78-86.
  • 59. Rodríguez-Tovar, F. J., Pérez-Valera, F. & Pérez-López, A., 2007. Ichnological analysis in high-resolution sequence stratigraphy: the Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sedimentary Geology, 198: 293-307.
  • 60. Salamon, M., Eagle, M. K. & Niedźwiedzki R. 2003. A new ceratite record from Upper Silesia (Poland). Geological Quarterly, 47: 281-288.
  • 61. Schlirf, M., 2000. Upper Jurassic trace fossils from the Boulonnais (northern France). Geologica et Palaeontologica, 34: 145-213.
  • 62. Schlirf, M., 2011. A new classification concept for U-shaped spreite trace fossils. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260: 33-54.
  • 63. Schmid, E. E., 1876. Der Muschelkalk des östlichen Thüringen. Fromann, Jena, 20 pp.
  • 64. Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology, 5: 413-428.
  • 65. Seilacher, A., 2007. Trace Fossil Analysis. Springer, Berlin, 226 pp.
  • 66. Stachacz, M., Knaust, D. & Matysik, M., 2022. Middle Triassic bivalve traces from central Europe (Muschelkalk, Anisian): overlooked burrows of a common ichnofabric. PalZ, 96: 175-196.
  • 67. Stachacz, M. & Matysik, M., 2020. Early Middle Triassic (Anisian) trace fossils, ichnofabrics, and substrate types from the southeastern Germanic Basin (Wellenkalk facies) of Upper Silesia, southern Poland: implications for biotic recovery following the Permian/Triassic mass extinction. Global and Planetary Change, 194: 103290.
  • 68. Sulej, T., Niedźwiedzki, G., Niedźwiedzki, R., Surmik, D. & Stachacz, M., 2011. New vertebrate assemblage from marginal-marine and land Lower Keuper strata (Ladinian, Middle Triassic) of Miedary, Silesia, SW Poland. Przegląd Geologiczny, 59: 426-430. [In Polish, with English abstract.]
  • 69. Szulc, J., 2000. Middle Triassic evolution of the northern periTethys area as influenced by early opening of the Tethys Ocean. Annales Societatis Geologorum Poloniae, 70: 1-48.
  • 70. Torell, O. M., 1870. Petrificata Suecana Formationis Cambricae. Lunds UniversitetÁrsskrilt, 6 (pt. 2): 1-14.
  • 71. Twitchett, R. J., 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 154: 27-37.
  • 72. Twitchett, R. J., 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 190-213.
  • 73. Twitchett, R. J. & Wignall, P. B., 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 124: 137-151.
  • 74. Uchman, A., 1991. “Shallow water” trace fossils in Paleogene flysch of the southern part of the Magura Nappe, Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 61: 61-75.
  • 75. Uchman, A., Szulc, J. & Hagdorn, H., 2017. Traces of bioerosion in the Triassic Placunopsis buildups of the central and western Europe. Book of Abstracts, 9th International Bioerosion Workshop. Rome, October 23rd-27‘h, 2017. Instituto Superiore per la Conservazione ed il Restauro, Rome, pp. 77-79.
  • 76. Wang, Y., Wang, X. & Shi, X., 2006. Pioneer organisms after F-F mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China: Series D, Earth Sciences, 49: 449-460.
  • 77. Worsley, D. & Mørk, A., 2001. The environmental significance of the trace fossil Rhizocorallium jenense in the Lower Triassic of western Spitsbergen. Polar Research, 20: 37-48.
  • 78. Zenker, J. C., 1836. Historisch-topographisches Taschenbuch von Jena und seiner Umbegung. Friedrich Frommann, Jena, 338pp.
  • 79. Zhao, X., Tong, J., Yao, H., Niu, Z., Luo, M., Huang, Y. & Song, H., 2015, Early Triassic trace fossils from the Three Gorges area of South China: implications for the recovery of benthic ecosystems following the Permian-Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 100-116.
  • 80. Zonneveld, J.-P., Gingras, M. K. & Pemberton, S. G., 2001. Trace fossil assemblages in a Middle Triassic mixed siliciclastic-carbonate marginal marine depositional system, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology, 166: 249-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9db26906-b127-44c8-89d0-b62113f218b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.