PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods for Treatment of Animal and Plant-Based Biomass Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the work presented, effective methods of biomass processing for its reuse in the framework of the circular economy were determined. Based on various sources, a definition of biomass was obtained. The review covers preliminary operations, i.e., screening and grinding, as well as the methods of pressure and non-pressure agglomeration of plant and animal biomass, as well as the process of torrefaction of plant biomass. The analysis of the literature indicates various process and technological solutions for biomass processing, as well as provides numerous examples of the use of biomass in combination with other types of industrial waste and mineral additives. The activities undertaken as part of the work are consistent with the assumptions of the European Green Deal and are carried out in order to improve the management of waste streams (green productivity) and to increase the amount of recovered energy produced.
Słowa kluczowe
Rocznik
Strony
32--42
Opis fizyczny
Bibliogr. 98 poz.
Twórcy
  • Łukasiewicz Research Network – Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie St, 90-570 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 213Wólczańska St, 90-924 Łódź, Poland
  • Łukasiewicz Research Network – Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie St, 90-570 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 213Wólczańska St, 90-924 Łódź, Poland
  • Bialystok University of Technology, Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, 45E Wiejska St, 15-351 Białystok, Poland
autor
  • Bialystok University of Technology, Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, 45E Wiejska St, 15-351 Białystok, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 213Wólczańska St, 90-924 Łódź, Poland
Bibliografia
  • 1. Kowalik P. Wykorzystanie biomasy jako surowca energetycznego. W: Termochemiczne przetwórstwo węgla i biomasy (in Polish). Red. Ściążko M., Zieliński H., Wyd. Instytutu Chemicznej Przeróbki Węgla, 2003, Kraków–Zabrze, pp. 39–41
  • 2. Mirowski T., Mokrzycki E., Uliasz-Bocheńczyk A. Energetyczne wykorzystanie biomasy (in Polish). Wyd. IGSMiE PAN, 2018, Kraków
  • 3. Daniel Z., Juliszewski T., Kowalczyk Z., Malinowski M., Sobol Z., Paulina Wrona P., Metoda szczegółowej klasyfikacji odpadów z sektora rolniczego i rolnospożywczego (in Polish), Infrastruktura i Ekologia Terenów Wiejskich, Nr 2/IV/2012, pp. 141–152
  • 4. Główny Urząd Statystyczny, Ochrona środowiska 2010 (in Polish), Wydawnictwo GUS, 2010, Warszawa
  • 5. Arvanitoyannis I. S, Kassaveti A, Ladas D, Food Waste Treatment Methodologies, Waste Management for the Food Industries, 2008, pp. 345
  • 6. Listwan A., Baic I., Łuksa A., Podstawy gospodarki odpadami niebezpiecznymi (in Polish), Wydawnictwo Politechniki Radomskiej, 2009, Radom
  • 7. Główny Urząd Statystyczny, Ochrona środowiska 2021 (in Polish), Wydawnictwo GUS., 2021, Warszawa
  • 8. Borowski G., Metody przetwarzania odpadów drobnoziarnistych na produkty użyteczne (in Polish), Wydawnictwo Politechniki Lubelskiej, 2013, Lublin
  • 9. Ławińska, K.; Wodziński, P.; Modrzewski, R., A Method for determining sieve holes blocking degree, Physicochem. Probl. Miner. Process. 2015, 51, 15-22. DOI:10.5277/ppmp150102
  • 10. Ławińska K, Modrzewski R, Serweta W. The phenomenon of screen blocking for mixtures of varying blocking grain content. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2018, 34 (1), pp.83-95. DOI 10.24425/118638
  • 11. Ławińska K, Wodziński P, Modrzewski R. A method for determining sieve holes blocking degree. Physicochemical Problems Of Mineral Processing 2015, 51 (1), pp.15-22. DOI: 10.5277/ppmp150102
  • 12. Ławińska K, Modrzewski R, Wodziński P. Mathematical and empirical description of screen blocking. Granular Matter 2016, 18 (1). DOI:10.1007/s10035-016-0622-4
  • 13. Ławińska K, Wodziński P, Modrzewski R. Verification of the mathematical model of the screen blocking process. Powder Technology 2014, 256, pp.506-511. DOI: 10.1016/j.powtec.2014.01.074
  • 14. Modrzewski R.,Wodziński P., The results of process investigations of a doublefrequency screen. Physicochemical Problems of Mineral Processing, 2010, vol. 44, pages 169-178.
  • 15. Modrzewski R., Wodziński P., Grained material classification on a double frequency screen. Physicochemical Problems of Mineral Processing, 2011, vol. 46, pages 5-12.
  • 16. Brown D., Rock mechanics for underground mining, JKMRC Internal Reports, 1992, pp. 444-445.
  • 17. Napier-NunnT.J., Morrell S., Morrisom R.D., Kojovic T., Mineral Comminution Circuits: Their Operation and Optimisation, JRMC / University of Queensland, Monograph Series in Mining and Mineral Processing 2, 1999.
  • 18. Olejnik 2013 - Olejnik T.P., Selected mineral materials grinding rate and its effect on product granulometric composition, Physicochem. Probl. Miner. Process. 49 (2), 2013, 407−418.
  • 19. Eksi D., Benzer A.H., Sargin A., Genc O., A new method for determination of fine particle breakage, Minerals Engineerng 24 (2011), pp. 216-220.
  • 20. Vizcarra T.G., Wightman E.M., Johnson N.W., Manlapig E.V., The effect of breakage mechanism on the mineral liberation properties of sulphide ores, Minerals Engineering 23 (2010), pp. 374–382, DOI:10.1016/j.mineng.2009.11.012.
  • 21. Siuda at al. 2018 - Siuda R., Kwiatek J., Obraniak A., GlubaT., Olejnik T.P., Marszałek-Gubiec A., Pietrasik T., Comparison of granulation methods of lime-gypsum fertilizer (Porównanie metod granulacji nawozu wapienno-gipsowego), Przemysł Chemiczny, 97/09 (2018), 1549-1553, DOI: 10.15199/62.2018.9.32.
  • 22. Olejnik T.P., Kinetics of frinding ceramic bulk considering grinding media contact points, Physicochemical Problems of Mineral Processing, (44) 2010, 187-194.
  • 23. Heim A. Olejnik T.P., Pawlak A., Using statistical moments to describe grinding in a ball mill for industrial-scale process, Chemical Engineering and Processing – Process Intensification, 44 (2), 2005, 263-266.
  • 24. Olejnik T. P., Sobiecka E., Utilitarian Technological Solutions to Reduce CO2 Emission in the Aspect of Sustainable Development, PROBLEMY EKOROZWOJU – PROBLEMS OF SUSTAINABLE DEVELOPMENT, 12 (2), 2017, 173-179.
  • 25. Taylor, F.W., The Principles of Scientific Management, Easton, Hive Publishing Comp. (1985) p. 13.
  • 26. Aman S., Tomas J., Kalman H., Breakage probability of irregularly shaped particles, Chemical Engineering Science 65 (2010) pp.1503–1512, DOI:10.1016/j.ces.2009.10.016.
  • 27. Baryga 2021 - Baryga A., Połeć B., Klasa A., Olejnik T.P., Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize, Processes (2021), 9, 765. https://doi.org/10.3390/pr9050765
  • 28. Bazin C., St-Pierre M., Hodouin D., Calibration of the perfect mixing model to a dry grinding mill, Powder Tech. 149, 2005, pp.93– 105; DOI:10.1016/j.powtec.2004.11.014.
  • 29. Kryszak D., Bartoszewicz A., Szufa S., Piersa P., Obraniak A., Olejnik T.P., Modeling of Transport of Loose Products with the Use of the Non-Grid Method of Discrete Elements (DEM), Processes (2020), 8, 1489.
  • 30. Siuda R., Kwiatek J., Szufa S., Obraniak A., Piersa P., Adrian Ł., Modrzewski R., Ławińska K., Siczek K., Olejnik T.P., Industrial Verification and Research Development of Lime–Gypsum Fertilizer Granulation Method, Minerals (2021), 11, 119. https://doi.org/10.3390/min11020119.
  • 31. Sobiecka E., Kołaciński Z., Rincón J. Ma., Szymański Ł., Olejnik T.P. “Coloured sintered glass-ceramics from hospital incineration fly ash”, Materials Letters, on-line, (2019), 252, 35-37, DOI: 10.1016/j.matlet.2019.05.047.
  • 32. Einav I., Breakage mechanics – Part I: Theory, Jour. of the Mechanics and Physics of Solids 55 (2007) pp.1274–1297; doi:10.1016/j.jmps.2006.11.003.
  • 33. Olejnik T. P., Analysis of the breakage rate function for selected process parameters in quartzite milling, Chem. Process Eng., 2012, 33 (1), 117-129.
  • 34. Hejft R., Obidziński S., Pressure agglomeration of materials of plant origin – pelletizing and briquetting (part one), Journal of Research and Applications in Agricultural Engineering, 1/2014, Vol. 59(1), 44-47.
  • 35. Skonecki S., Potręć M., Wpływ wilgotności na ciśnieniowe zagęszczanie biomasy roślinnej (in Polish), Zeszyty Problemowe Postępów Nauk Rolniczych, 2010, 546, 341-346.
  • 36. Skonecki S., Kulig R., Łysiak G., Models of pressure compaction and their application for wheat meal. Int. Agrophys., 2014, 28, 125-130.
  • 37. Shaw M.D., Feedstock and process variables influencing biomass densification. A Thesis, Department of Agricultural and Bioresource Engineering, University of Saskatchewan, 2008, Saskatoon, Saskatchewan, Canada.
  • 38. Niedziolka I., Szymanek M., Zuchniarz A., Zawiślak K., Characteristics of pellets produced from selected plants mixes, TEKA Kom. Mot. Energ. Roln. – OL PAN, 2008, Vol. 8, 157–162.
  • 39. Kaliyan N., Morey R.V., Factors affecting strength and durability of densified biomass products, Biomass Bioenerg. 33, 2009, 337–359.
  • 40. Szpryngiel M., Kraszkiewicz A., Kachel-Jakubowska M., Niedziólka I., Ocena gęstości usypowej i energochłonności produkcji peletów w peleciarce z dwustronną matrycą płaską (in Polish), Inżynieria Rolnicza, 2011, 6 (131), 215-222.
  • 41. Niedziółka I., Szpryngiel M., Magdalena Kachel-Jakubowska M., Kraszkiewicz A., Zawiślak K., Sobczak P., Nadulski R., Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass, Renewable Energy, 2015, 76, 312-317.
  • 42. Miranda T., Montero I., Sepúlveda F.J., Arranz J.I., Rojas C.V., Nogales S., A review of pellets from different sources, Materials, 2015, 8, 1413-1427.
  • 43. Azargohar, R.; Nanda, S.; Dalai, A.K., Densification of agricultural wastes and forest residues: A review on influential parameters and treatments, Recent Adv. Biofuels Bioenergy Util., 2018, 27–51.
  • 44. Peng, J.; Bi, X.T.; Lim, C.J.; Peng, H.; Kim, C.S.; Jia, D.; Zuo, H., Sawdust as an effective binder for making torrefied pellets. Appl. Energy, 2015, 157, 491–498.
  • 45. Harun, N.Y.; Parvez, A.M.; Afzal, M.T., Process and energy analysis of pelleting agricultural and woody biomass blends, Sustainability, 2018, 10, 1–9.
  • 46. Liu, Z.; Mi, B.; Jiang, Z.; Fei, B.; Cai, Z.; Liu, X., Improved bulk density of bamboo pellets as biomass for energy production, Renewable Energy, 2016, 86, 1–7.
  • 47. García, R.; Gil, M.V.; Rubiera, F.; Pevida, C., Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets, Fuel, 2019, 251, 739–753.
  • 48. Arranz J.I., Analysis of densified of the combination from different biomass waste. Doctoral Thesis, University of Extremadura, 2011, Badajoz, Spain.
  • 49. Miranda T., Arranz J.I., Montero I., Román S., Rojas C.V., Nogales S., Characterization and combustion of olive pomace and forest residue pellets, Fuel Processing Technology, 2012, 103, 91-96.
  • 50. Chou C.S., Sheau-Horng Lin S.H., Wen-Chung Lu W.C., Preparation and characterization of solid biomass fuel made from rice straw and rice bran, Fuel Processing Technology, 2009, 90, 980–987.
  • 51. Nasrin, A.B., Ma A.N., Mohammad S., Rohaya M.H., Azali A., Zainal Z., Oil palm biomass as potential substitution raw materials for commercial biomass briquettes production, American Journal of Applied Sciences, 2008, 5, 179–183.
  • 52. Celma R., Cuadros F., López-Rodríguez F., Characterization of pellets from industrial tomato residues, Food Bioprod Process, 2008, 90, Issue 4, 700–706.
  • 53. Stahl M., Berghel J., Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake, Biomass and Bioenergy, 35 (2011), 4849-4854.
  • 54. Nielsen N.P.K., Importance of raw material properties in wood pellet production - effects of differences in wood properties for the energy requirements of pelletizing and the pellet quality. Forest & Landscape Denmark, Faculty of Life Sciences, University of Copenhagen, Copenhagen, 2009.
  • 55. Öhman, M., Boman, C., Hedman, H. & Eklund, R., Residential Combustion Performance of Pelletized Hydrolysis Residue from Lignocellulosic Ethanol production. Energy & fuels, 2006, Vol. 20, pp. 1298-1304.
  • 56. Stolarski M., Wykorzystanie biomasy do produkcji peletu (in Polish), Czysta Energia 55/2006. s.28.
  • 57. Wandrasz J.W. Wandrasz A.J., Paliwa formowane (in Polish), Wyd. Seidel-Przywecki, Warszawa 2006.
  • 58. Wandrasz J.W., Paliwa, paliwa formowane, formowanie paliw (in Polish). Praca zb. pod red. Wandrasz J.W. Termiczne unieszkodliwianie odpadów. Restrukturyzacja procesów termicznych (in Polish), Wyd. PZITS Poznań 2007, s. 105 –112.
  • 59. Obidzinski S., Pelletisation of biomass waste with potato pulp content, International Agrophisics, 2014, Vol. 28 (1), 85-91.
  • 60. Obidzinski S., Utilization of postproduction waste of potato pulp and buckwheat hulls in the form of pellets, Polish Journal of Environmental Studies, Vol. 23 (2014), 1391-1395.
  • 61. Obidziński S., Dołżyńska M., Badanie procesu zagęszczania odpadów zbożowych (in Polish), Przemysł Chemiczny, R. 96, nr 11 (2017), 1000-1003.
  • 62. Obidziński S., Dołżyńska M., Kowczyk-Sadowy M., Jadwisieńczak K., Sobczak P., Densification and fuel properties of onion husks, Energies, 2019, 12, 4687, DOI: 10.3390/en12244687.
  • 63. Dołżyńska M., Obidziński S., Kowczyk-Sadowy M., Krasowska M., Densification and combustion of cherry stones, Energies, 2019, 12, 3042, DOI: 10.3390/en12163042.
  • 64. Obidziński S., Dołżyńska M., Puchlik M., Pelletization of post-harvest tobacco waste and investigation of fuel gas emissions from pellet combustion, Energies, 2020, 13, 6002, DOI: 10.3390/en13226002.
  • 65. Dołżyńska M., Obidziński S., Piekut J., Yildiz G., The utilization of plum Stones for pellet production and investigation of post-combustion flue gas emissions, Energies, 2020, 13, 5107, DOI: 10.3390/en13195107.
  • 66. Wilaipon P., Trirattanasirichai K., Tangchaichit K., The effects of moderate die pressure on banana-peel briquettes, The 2nd International Conference on Thermal Engineering and Applications, 2006, United Arab Emirates.
  • 67. Wilaipon P., Physical characteristics of maize cob briquette under moderate die pressure, American Journal of Applied Sciences, 2007, 4, n.12, 995-998.
  • 68. Wilaipon P., The effects of briquetting pressure on banana-peel briquette and the banana waste in northern Thailand, American Journal of Applied Sciences, 2009, 6, 167-171.
  • 69. Oliveira Maia B., Souza O., Marangoni C., Hotza D., Oliveira A.P., Sellin N., Production and characterization of fuel briquettes from banana leaves waste, Chemical Engineering Transactions, 2014, 37, 439-444.
  • 70. Sellin N., de Oliveira B.G., Marangoni C., Souza O., de Oliveira A.P.N., de Oliveira T.M.N., Use of Banana culture waste to produce briquettes, Chemical Engineering Transactions, 2013, 32, 349-354, DOI: 10.3303/CET1332059
  • 71. Szyszlak-Bargłowicz J., Słowik T., Zając G., Blicharz-Kania A., Zdybel B., Andrejko D., Obidziński S., Energy parameters of Miscanthus biomass pellets supplemented with copra meal in terms of energy consumption during the pressure agglomeration process, Energies 2021, 14 (14), 4167, DOI: 10.3390/en14144167.
  • 72. Woo D-G., Kim S.H., Kim T.H., Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder, Energies 2021, 14 (2), 371, DOI: 103390/en14020371.
  • 73. Obraniak A., Gluba T., Ławińska K., Derbiszewski B. Minimisation of environmental effects related with storing fly ash from combustion of hard coal, Environment Protection Engineering 2018, Vol. 44 (4), pp. 177-189. DOI: 10.5277/epe180412.
  • 74. Lawinska K., Serweta W., Modrzewski R. Studies on water absorptivity and desorptivity of tannery shavings-based composites with mineral additives, Przemysł Chemiczny, 2019, 98 (1), pp.106-109.
  • 75. Lawinska K., Modrzewski R., Serweta W. Tannery Shavings and Mineral Additives as a Basis of New Composite Materials, Fibres & Textiles in Eastern Europe 2019, 27, 5(137), pp.89-93. DOI: 10.5604/01.3001.0013.2906.
  • 76. Ławińska K., Modrzewski R., Obraniak A. Comparison of Granulation Methods for Tannery Shavings. FIBRES & TEXTILES in Eastern Europe 2020, 28, 5(143), pp. 119-123. DOI: 10.5604/01.3001.0014.2396.
  • 77. Ławinska K., Szufa S., Modrzewski R., Obraniak A., Wężyk T., Rostocki A., Olejnik T., Obtaining Granules from Waste Tannery Shavings and Mineral Additives by Wet Pulp Granulation, Molecules 2020, 25, 5419, DOI: 103390/molecules25225419.
  • 78. Ławińska K., Obraniak A., Modrzewski R., Granulation Process of Waste Tanning Savings, Fibers & Textiles In Eastern Europe 2019, 27, 2 (134).
  • 79. Ławińska K., Szufa S., Obraniak A., Olejnik T., Siuda R., Kwiatek J., Ogrodowczyk D., Disc Granulation Process of Carbonation Lime Mud as a Method of Post‐Production Waste Management, Energies 2020, 13, 3419; DOI: 10.3390/en13133419.
  • 80. Siuda R., Kwiatek J., Szufa S., Obraniak A., Piersa P., Adrian Ł., Modrzewski R., Ławińska K., Siczek K., Olejnik T.P., Industrial Verification and Research Development of Lime–Gypsum Fertilizer Granulation Method, Minerals 2021, 11, 119, DOI: 10.3390/min11020119.
  • 81. Ławińska K., Gendaszewska D., Grzesiak E., Lasoń-Rydel M., Obraniak A. Otoczkowanie nasion strączkowych hydrolizatami kolagenu z odpadów garbarskich (in Polish). Przemysł Chemiczny 96/9, (2017), DOI: 10.15199/62.2017.9.11.
  • 82. Ławińska K., Gendaszewska D., Grzesiak E., Jagiełło J., Obraniak A. Zagospodarowanie odpadów garbarskich w nasiennictwie (in Polish). Przemysł Chemiczny 96/11 (2017), 2344-2347, DOI: 10.15199/62.2017.11.24.
  • 83. Obraniak A. Wpływ nawilżania roztworem skrobi ziemniaczanej na mechanizmy granulacji talerzowej (in Polish). Przemysł Chemiczny 96/11 (2017), 2339-2343, DOI: 10.15199/62.2017.11.23.
  • 84. Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A., Torrefaction of biomass existing coal-fired power stations. ECN publication 2005, ECN-C-05-013, Netherlands.
  • 85. Jakubiak, M., Kordylewski, W., Toryfikacja biomasy (in Polish). Archiwum Spalania, Vol. 10, nr 1-2, Polski Instytut Spalania, 2010, pp. 11-25
  • 86. Kopczyński, M., i J. Zuwała., Biomasa toryfikowana – nowe paliwo dla energetyki (in Polish). Chemik, t. 67, 6, Stowarzyszenie Inżynierów i Techników Przemysłu Chemicznego, Zakład Wydawniczy CHEMPRESS-SITPChem, 2013, s. 540–51.
  • 87. Kopczyński M., Zuwała J., Toryfikacja biomasy drogą do eliminacji barier technologicznych wielkoskalowego jej współspalania (in Polish). Polityka Energetyczna, Tom 16, Zeszyt 4, Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 2013, pp. 271-284
  • 88. Kratofil M., Zarzycki R., Kobyłecki R., Bis Z., Analiza procesu toryfikacji biomasy (in Polish). Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika, 2015, Tom XXXII, Zeszyt 87 (291), nr 2, pp. 119-126
  • 89. Szufa, S., Piersa, P., Adrian Ł., Czerwińska J., Lewandowski A., Lewandowska W., Sielski J., Dzikuć M., Wróbel M., Jewiarz M., Knapczyk A., Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014, DOI: 10.3390/molecules26041014
  • 90. Szufa S., Use of superheated steam in the process of biomass torrefaction. Przemysł Chemiczny 2020, 99, 1797–1801, DOI: 10.15199/62.2020.12.22
  • 91. Piersa P., Szufa S., Czerwińska J., Ünyay H., Adrian Ł., Wielgosinski G., Obraniak A., Lewandowska W., Marczak-Grzesik M., Dzikuć M., Romanowska-Duda Z., Olejnik T.P., Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers. Energies 2021, 14, 8176, DOI: 10.3390/en14238176
  • 92. Romanowska-Duda Z., Szufa S., Grzesik M., Piotrowski K., Janas R., The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. Energies 2021, 14, 5262, DOI: 10.3390/en14175262
  • 93. Szufa S., Piersa P., Adrian Ł., Sielski J., Grzesik M., Romanowska-Duda Z., Piotrowski K., Lewandowska W., Acquisition of Torrefied Biomass from Jerusalem Artichoke Grown in a Closed Circular System Using Biogas Plant Waste. Molecules 2020, 25, 3862. DOI: 10.3390/molecules25173862
  • 94. Szufa S., Wielgosiński G., Piersa P., Czerwińska J., Dzikuć M., Adrian Ł., Lewandowska W., Marczak M., Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers—TGA Analysis, Kinetics as Products for Agricultural Purposes. Energies 2020, 13, 2064, DOI: 10.3390/en13082064
  • 95. Szufa S., Dzikuc M., Adrian L., Piersa P., Romanowska-Duda Z., Lewandowska W., Marczak M., Blaszczuk A., Piwowar A., Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon - TGA analysis, kinetics. E3S Web Conference, 154 (2020) 02004, DOI: 10.1051/e3sconf/202015402004
  • 96. Szufa S., Adrian Ł., Piersa P., Romanowska-Duda Z., Grzesik M., Cebula A., Kowalczyk S., Experimental studies on energy crops torrefaction process using batch reactor to estimate torrefaction temperature and residence time. Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy, Springer Cham, 2018, p. 365-373, DOI: 10.1007/978-3-319-72371-6_35
  • 97. Szufa S., Adrian Ł., Piersa P., Romanowska-Duda Z., Ratajczyk-Szufa J., Torrefaction process of millet and cane using batch reactor. Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy, Springer Cham, 2020, p. 371-379, DOI: 10.1007/978-3-030-13888-2_37
  • 98. Chen W-H., Lin B-J., Lin Y-Y., Chu Y-S., Aristotle T. Ubando A.T., Pau Loke Show P.L., Ong H.C., Chang J-S., Shih-Hsin Ho S-H., Culaba A.B., Pétrissans A., Pétrissans M., Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 2021, Volume 82, 100887, DOI: 10.1016/j.pecs.2020.100887
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9daff373-f926-45ae-b1c1-dc631e9e0f5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.