PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The utilisation of fly ash in CO2 mineral carbonation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fixation of CO2 in the form of inorganic carbonates, also known as mineral carbonation, is an interesting option for the removal of carbon dioxide from various gas streams. The captured CO2 is reacted with metal-oxide bearing materials, usually naturally occurring minerals. The alkaline industrial waste, such as fly ash can also be considered as a source of calcium or magnesium. In the present study the solubility of fly ash from conventional pulverised hard coal fired boilers, with and without desulphurisation products, and fly ash from lignite fluidised bed combustion, generated by Polish power stations was analysed. The principal objective was to assess the potential of fly ash used as a reactant in the process of mineral carbonation. Experimental were done in a 1 dm 3 reactor equipped with a heating jacket and a stirrer. The rate of dissolution in water and in acid solutions was measured at various temperatures (20 – 80ºC), waste-to-solvent ratios (1:100 – 1:4) and stirrer speeds (300 – 1100 min -1). Results clearly show that fluidised lignite fly ash has the highest potential for carbonation due to its high content of free CaO and fast kinetics of dissolution, and can be employed in mineral carbonation of CO2.
Rocznik
Strony
29--39
Opis fizyczny
Bibliogr. 16 poz., tab., rys.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
Bibliografia
  • 1. Back M., Kuehn M., Stanjek H., Peiffer S., 2008. Reactivity of alkaline lignite fly ashes towards CO2 in water. Environ. Sci. Technol., 42, 4520-4526. DOI: 10.1021/es702760v.
  • 2. Bauer M., Gassen M., Stanjek H., Peiffer S., 2011. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl. Geochem., 26, 1502-1512. DOI:10.1016/j.apgeochem.2011.05.024.
  • 3. Huijgen W.J.J., Comans R.N.J., 2003. Carbon dioxide sequestration by mineral carbonation. Literature Review. Report ECN-C-03-016. Energy Research Centre of the Netherlands, Petten, The Netherlands.
  • 4. Huijgen W.J.J., Comans R.N.J., 2005. Carbon dioxide sequestration by mineral carbonation. Literature Review Update 2003-2004. Report ECN-C-05-022. Energy Research Centre of the Netherlands, Petten, The Netherlands.
  • 5. Huijgen W.J.J., Comans R.N.J., 2005a. Mineral CO2 sequestration by carbonation of industrial residues. Literature overview and selection of residue. Report ECN-C-05-074. Energy Research Centre of the Netherlands, Petten, The Netherlands. IPCC, 2014. Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY. USA.
  • 6. Jaschik J., Warmuzinski K., Jaschik M., 2013. The use of alkaline industrial waste in the sequestration of carbon dioxide. Proceedings of the XXI National Conference on Chemical and Process Engineering, Kolobrzeg, Poland (in Polish).
  • 7. Lackner K.S., Wendt C.H., Butt D.P., Joyce E.L., Sharp D.H., 1995. Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170. DOI: 10.1016/0360-5442(1995)00071-N.
  • 8. Lackner K.S., Butt D.P., Wendt C.H., 1997. Progress on binding CO2 in mineral substrates. Energy Convers. Manage., 38, Suppl. S259-S264. DOI: 10.1016/S0196-8904(96)00279-8.
  • 9. Metz B. Davidson O., de Coninck H., Loos M., Meyer L. (Eds), 2005. Carbon dioxide capture and storage.Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 10. Mun M., Cho H., 2013. Mineral carbonation for carbon sequestration with industrial waste. Energy Procedia, 37, 6999-7005. DOI: 10.1016/j.egypro.2013.06.633.
  • 11. Sanna A., Uibu M., Caramanna G., Kuusik R., Maroto-Valer M.M., 2014. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev., 43, 8049-8080. DOI: 10.1039/c4cs00035h.
  • 12. Seifritz W., 1990. CO2 disposal by means of silicates. Nature, 345, 486. DOI: 10.1038/345486b0.
  • 13. Stolaroff J.K., Lowry G.V., Keith D.W., 2005. Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Convers. Manage., 46, 687-699. DOI: 10.1016/j.enconman.2004.05.009.
  • 14. Uibu M., Kuusik R., 2009. Mineral trapping of CO2 via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continouous-flow reactor system. Oil Shale, 26, 40-58. DOI: 10.3176/oil.2009.1.06.
  • 15. Uliasz-Bochenczyk A., 2011. Mineral Sequestration of CO2 Using Water Suspensions of Selected Fly Ashes from the Combustion of Lignite Coal. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 27, 145-154 (in Polish).
  • 16. Uliasz-Bochenczyk A., Gawlicki M., Pomykala R., 2012. Evaluation of the possibilities of sequestration of carbon dioxide in aqueous suspensions of selected fly ash. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 28, 103-112. DOI: 10.2478/v10269-012-0011-5 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9daf314c-c5ed-4d92-88fe-029d44bed748
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.