PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interfacial thermal resistance (ITR) exists between filler and matrix in any composite material and has a significant influence on its effective thermal conductivity. To predict the effective thermal conductivity of composite material, the conductivities of each component as well as the ITR must be known. Theoretical models, like the acoustic mismatch model (AMM), allow for accurate ITR determination only for an idealized case of perfect contact (no interfacial gaps and good bonding). The interfacial bonding in typical composites for thermal conduction, like diamond-reinforced metal matrix composites (MMCs) is usually highly imperfect and the ITR, in composites of the same type, depends highly on the individual manufacturing conditions. Therefore, a great need exists for reliable experimental ITR measurement techniques. In this paper, the main difficulties regarding experimental ITR measurements are discussed. A review of measurement techniques is presented, with the main focus put on the principle of each technique and its appropriateness for the purpose of composite materials. The strengths and weaknesses of each technique are discussed.
Rocznik
Strony
270--285
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] G. Bai, W. Jiang, L. Chen, Effect of interfacial thermal resistance on effective thermal conductivity of MoSi2/SiC composites, Materials Transactions 47 (4) (2006) 1247–1249.
  • [2] E. T. Swarz, R. O. Pohl, Thermal boundary resistance, Reviews of Modern Physics 61 (3) (1989) 605–668.
  • [3] R. S. Prasher, P. E. Phelan, A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance, Journal of Heat Transfer 123 (1) (2001) 105–112.
  • [4] P. Furmański, T. S. Wiśniewski, J. Banaszek, Thermal contact resistance and other thermal phenomena at solidsolid interface, Institute of Heat Engineering, Warsaw, 2008.
  • [5] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, S. R. Phillpot, Nanoscale thermal transport, Journal of Applied Physics 93 (2003) 793.
  • [6] E. Chapelle, B. Garnier, B. Bourouga, Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites, International Journal of Thermal Sciences 48 (12) (2009) 2221–2227.
  • [7] H. Bhatt, K. Y. Donaldson, D. P. H. Hasselman, Role of interfacial carbon layer in the thermal diffusivity /conductivity of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites, Journal of the American Ceramic Society 75 (2) (1992) 334–340.
  • [8] C.-W. Nan, X.-P. Li, R. Birringer, Inverse problem for composites with imperfect interface: determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters, Journal of the American Ceramic Society 83 (4) (2000) 848–854.
  • [9] K. Jagannadham, H. Wang, Thermal resistance of interfaces in AlN–diamond thin film composites, Journal of Applied Physics 91 (2002) 1224–1235.
  • [10] F. Macedo, J. A. Ferreira, Thermal contact resistance evaluation in polymer-based carbon fiber composites, Review of Scientific Instruments 74 (1) (2003) 828–830.
  • [11] M. Kida, L.Weber, C. Monachon, A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, Journal of Applied Physics 109 (2011) 064907.
  • [12] A. M. Abyzov, S. V. Kidalov, F. M. Shakhov, Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity, Physics of the Solid State 54 (1) (2012) 210–215.
  • [13] E. T. Swarz, R. O. Pohl, Thermal resistance at interfaces, Applied Physics Letters 51 (1987) 2200.
  • [14] K. E. Goodson, M. I. Flik, L. T. Su, D. A. Antoniadis, Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers, Electron Device Letters, IEEE 14 (10) (1993) 490–492.
  • [15] A. N. Smith, J. L. Hostetler, P. M. Norris, Thermal boundary resistance measurements using a transient thermoreflectance technique, Microscale Thermophysical Engineering 4 (1) (2000) 51–60.
  • [16] R. J. Stoner, H. J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K, Physical Review B 48 (22) (1993) 16373.
  • [17] R. J. Stevens, A. N. Smith, P. M. Norris, Measurement of thermal boundary conductance of a series of metaldielectric interfaces by the transient thermoreflectance technique, Journal of Heat Transfer 127 (3) (2005) 315–322.
  • [18] F. Lepoutre, D. Balageas, P. Forge, S. Hirschi, J. L. Joulaud, D. Rochais, F. C. Chen, Micronscale thermal characterizations of interfaces parallel or perpendicular to the surface, Journal of Applied Physics 78 (1995) 2208.
  • [19] B. Li, J. P. Roger, L. Pottier, D. Fournier, Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting, Journal of Applied Physics 86 (1999) 5314.
  • [20] B. Li, S. Zhang, The effect of interface resistances on thermal wave propagation in multi-layered samples, Journal of Physics D: Applied Physics 30 (1997) 1447–1454.
  • [21] G. Meyer-Berg, R. Osiander, P. Korpiun, P. Kakoschke, H. Joswig, Springer series in Optical Sciences, Vol. 69, Springer, Berlin, 1992, Ch. The thermal resistance of grain boundaries determined by modulated optical reflectance, pp. 711–713.
  • [22] B. Garnier, T. Dupuis, J. Gilles, J. P. Bardon, F. Danes, Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using semi-intrinsic thermocouple, in: Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, 2002, pp. 9–14.
  • [23] D. Maillet, S. Andre, J.-C. Batsale, A. Degiovanni, C. Moyne, Thermal quadrupoles, Wiley, Chicester, 2000.
  • [24] R. F. Hill, P. H. Supancic, Determination of the thermal resistance of the polymer–ceramic interface of aluminafilled polymer composites, Journal of the American Ceramic Society 87 (10) (2004) 1831–1835.
  • [25] W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics 32 (9) (1961) 1679–1684.
  • [26] R. D. Cowan, Pulse method of measuring thermal diffusivity at high temperatures, Journal of Applied Physics 34 (4) (1963) 926–927.
  • [27] J. A. Cape, G. Lehman, Temperature and finite-time efects in the flash method for measuring thermal diffusivity, Journal of Applied Physics 34 (1963) 1909–1913.
  • [28] C.-P. Chiu, J. G. Maveety, Q. A. Tran, Characterization of solder interfaces using laser flash metrology, Microelectronics Reliability 42 (2002) 93–100.
  • [29] J. Absi, D. S. Smith, B. Nait-Ali, S. Grandjean, J. Berjonnaux, Thermal response of two-layer systems: Numerical simulation and experimental validation, Journal of the European Ceramic Society 25 (2005) 367–373.
  • [30] H. J. Lee, Thermal diffusivity in layered and dispersed composites, Ph.D. thesis, Purdue University, Lafayette, Indiana (1975).
  • [31] J. Hartmann, O. Nilsson, J. Fricke, Thermal diffusivity measurements on two-layered and three-layered systems with the laser flash method, High Temperatures-High Pressures 25 (1993) 403–410.
  • [32] N. D. Milosević, M. Raynaud, K. D. Maglić, Simultaneous estimation of the thermal diffusivity and thermal contact resistance of thin solid films and coatings using the two-dimensional flash method, International Journal of Thermophysics 24 (3) (2003) 799–819.
  • [33] N. D. Milosević, Optimal parametrization in the measurements of the thermal diffusivity of thermal barrier coatings, Thermal Science 11 (1) (2007) 137–156.
  • [34] N. D. Milosević, Determination of transient thermal interface resistance between two bonded metal bodies using the laser-flash method, International Journal of Thermophysics 29 (2008) 2072–2087.
  • [35] Z. Tao, Q. Guo, X. Gao, L. Liu, The wettability and interface thermal resistance of copper/graphite system with an addition of chromium, Materials Chemistry and Physics 128 (2011) 228–232.
  • [36] P. W. Ruch, O. Be_ort, S. Kleiner, L. Weber, P. J. Uggowitzer, Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity, Composites Science and Technology 66 (2006) 2677–2685.
  • [37] K. Chu, C. Jia, X. Liang, H. Chen,W. Gao, H. Guo, Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance, Materials and Design 30 (2009) 4311–4316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9da568b3-5ae3-4227-b8bd-20fea1b94174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.