Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Proteolityc activity monitoring as an element of diagnostics of civilization diseases
Języki publikacji
Abstrakty
Proteolytic enzymes are essential for the proper functioning of every living cell. Due to their great importance in controlling metabolic changes in living organisms, they could be used in the diagnosis of civilization diseases. Hence, the search for new methods of determining and controlling their activity is extremely important. Our team, has been studying substrates of proteases and their potential use in detection of biomarkers activity for many years.
Wydawca
Czasopismo
Rocznik
Tom
Strony
335--347
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
- Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
- Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
- studentka Wydziału Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
- studentka Wydziału Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
- Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
- Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
Bibliografia
- [1] C. López-Otín, J. S. Bond, Proteases: multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283, 30433.
- [2] J.A. Mótyán, F. Tóth, J. Tőzsér, Research applications of proteolytic enzymes in molecular biology. Biomolecules, 2013, 3, 923.
- [3] K. Tanaka, The proteasome: overview of structure and functions. Proc. Jpn Acad. Ser. B Phys. Biol. Sci., 2009, 85, 12.
- [4] H.Y. Chang, X. Yang, Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev., 2000, 64, 821.
- [5] S.A. Smith, R.J. Travers, J.H. Morrissey, How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol, 2015, 50, 326.
- [6] A. Shawli, Y. Almaghrabi, A.S. AlQuhaibi, Y. Alghamdi, A.M. Aboud, A Mutation in Cathepsin C Gene Causing Papillon-Lefèvre Syndrome in a Saudi Patient: A Case Report. Cureus, 2020, 12, 6546.
- [7] M.C. Ferrall-Fairbanks, C.A. Kieslich, M.O. Platt, Reassessing enzyme kinetics: Considering protease-as-substrate interactions in proteolytic networks. Proc. Natl. Acad. Sci. U S A., 2020, 117, 3307.
- [8] P.K. Robinson, Enzymes: principles and biotechnological applications. Essays Biochem., 2015, 59, 1.
- [9] A.R. Khan, M.N. James, Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci., 1998, 7, 815.
- [10] S.H. Lecker, A.L. Goldberg, W.E. Mitch, Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol., 2006, 17, 1807.
- [11] J. Hanna, A. Guerra-Moreno, J. Ang, Y. Micoogullari, Protein Degradation and the Pathologic Basis of Disease. Am. J. Pathol., 2019, 189, 94.
- [12] R. Fontes, J. M. Ribeiro, A. Sillero, Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters. Acta Biochim. Pol., 2000, 47, 233.
- [13] A. Geronikaki, Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules., 2020, 26, 17.
- [14] M. Merski, C. Moreira, R.M. Abreu, M.J. Ramos, P.A. Fernandes, L.M. Martins, P. Pereira, S. Macedo-Ribeiro, Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2. Cell Death Dis, 2017, 8, 3119.
- [15] A.K. Iyer, Y. Rojanasakul, N. Azad, Nitrosothiol signaling and protein nitrosation in cell death. Nitric oxide., 2014, 42, 9.
- [16] E. Vuorinen, S. Valtonen, N. Hassan, R. Mahran, H. Habib, M. Malakoutikhah, K. Kopra, H. Härmä, Protease Substrate-Independent Universal Assay for Monitoring Digestion of Native Unmodified Proteins. Int. J. Mol. Sci., 2021, 22, 6362.
- [17] M. Poreba, R. Solberg, W. Rut, N.N. Lunde, P. Kasperkiewicz, S. J. Snipas, M. Mihelic, D. Turk, B. Turk, G. S. Salvesen, M. Drag, Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chem. Biol. , 2016, 23, 1023.
- [18] K. Hojo, M. Maeda, S. Iguchi, T. Smith, H. Okamoto, K. Kawasaki, Amino acids and peptides. XXXV. Facile preparation of p-nitroanilide analogs by the solid-phase method. Chem. Pharm. Bull. (Tokyo)., 2000, 48, 1740.
- [19] M. Wysocka, B. Spichalska, A. Lesner, M. Jaros, K. Brzozowski, A. Łegowska, K. Rolka, Substrate specificity and inhibitory study of human airway trypsin-like protease. Bioorg. Med. Chem., 2010, 18, 5504.
- [20] A. Lesner, M. Wysocka, K. Guzow, W. Wiczk, A. Legowska, K. Rolka, Development of sensitive cathepsin G fluorogenic substrate using combinatorial chemistry methods. Anal. Biochem., 2008, 375, 306.
- [21] M. Wysocka, N. Gruba, A. Miecznikowska, J. Popow-Stellmaszyk, M. Gütschow, M. Stirnberg, N. Furtmann, J. Bajorath, A. Lesner, K. Rolka, Substrate specificity of human matriptase2. Biochimie., 2014, 97, 121.
- [22] X. Tian, L.C. Murfin, L. Wu, S.E. Lewis, T.D. James, Fluorescent small organic probes for biosensing. Chem. Sci., 2021, 12, 3406.
- [23] C.R. Drake, D.C. Miller, E. F. Jones, Activatable Optical Probes for the Detection of Enzymes. Curr. Org. Synth., 2011, 8, 498.
- [24] L. Wu, C. Huang, B.P. Emery , A.C. Sedgwick, S.D. Bull, H.P. He, H. Tian, J. Yoon, J.L. Sessler, T. D. James, Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev., 2020, 49, 5110.
- [25] N. Gruba, E. Bielecka, M. Wysocka, A. Wojtysiak, M. Brzezińska-Bodal, K. Sychowska, M. Kalińska, M. Magoch, A. Pęcak, K. Falkowski, M. Wiśniewska, L. Sąsiadek, K. Płaza, E. Kroll, A. Pejkovska, M. Rehders, K. Brix, G. Dubin, T. Kantyka, J. Potempa, A. Lesner, Development of Chemical Tools to Monitor Human Kallikrein 13 (KLK13) Activity. Int. J. Mol. Sci., 2019, 20, 1557.
- [26] S.S. Cotrin, L. Puzer, W.A. de Souza Judice, L. Juliano, A.K. Carmona, M.A. Juliano, Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Anal. Biochem., 2004, 335, 244.
- [27] C. Seoane Prado, Síntesis combinatoria: una nueva metodología en química médica [Combinatorial synthesis: an important methodology in medicinal chemistry]. Anales RANM, 2005, 122, 723.
- [28] T. Mavromoustakos, S. Durdagi, C. Koukoulitsa, M. Simcic, M.G. Papadopoulos, M. Hodoscek, S.G. Grdadolnik, Strategies in the rational drug design. Curr. Med. Chem., 2011, 18, 2517.
- [29] J. Popow-Stellmaszyk, M. Wysocka, A. Lesner, B. Korkmaz, K. Rolka, A new proteinase 3 substrate with improved selectivity over human neutrophil elastase. Anal. Biochem., 2013, 442, 75.
- [30] M. Łęgowska, Y. Hamon, A. Wojtysiak, R. Grzywa, M. Sieńczyk, T. Burster, B. Korkmaz, A. Lesner, Development of the first internally-quenched fluorescent substrates of human cathepsin C: The application in the enzyme detection in biological samples. Arch. Biochem. Biophys., 2016, 612, 91.
- [31] N. Gruba, M. Wysocka, M. Brzezińska, D. Debowski, K. Rolka, N. I. Martin, A. Lesner, Novel internally quenched substrate of the trypsin-like subunit of 20S eukaryotic proteasome. Anal. Biochem., 2016, 508, 38.
- [32] M. Wysocka, N. Gruba, R. Grzywa, A. Giełdoń, R. Bąchor, K. Brzozowski, M. Sieńczyk, J. Dieter, Z. Szewczuk, K. Rolka, A. Lesner, PEGylated substrates of NSP4 protease: A tool to study protease specificity. Sci. Rep., 2016, 6, 22856.
- [33] M. Maślanka, A. Mucha, Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel, Switzerland), 2019, 12, 86.
- [34] H. Fang, B. Peng, S. \Y. Ong, Q. Wu, L. Li, S.Q. Yao, Recent advances in activity-based probes (ABPs) and affinity-based probes (AfBPs) for profiling of enzymes. Chem. Sci., 2021, 12, 8288.
- [35] D. W. Grainger, D. G. Castner, M. Dubey, K. Emoto, H. Takahashi, Affinity-based Protein Surface Pattern Formation by Ligand Self-Selection from Mixed Protein Solutions. Adv. Funct. Mater., 2009, 19, 3046.
- [36] F. McNab, K. Mayer-Barber, A. Sher, A. Wack, A. O'Garra, Type I interferons in infectious disease. Nat. Rev. Immunol., 2015, 15, 87.
- [37] N. Gruba, J. I. Rodriguez Martinez, R. Grzywa, M. Wysocka, M. Skoreński, M. Burmistrz, M. Łęcka, A. Lesner, M. Sieńczyk, K. Pyrć, Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett., 2016, 590, 3459.
- [38] N. Gruba, J. Martinez, R. Grzywa, M. Wysocka, M. Skoreński, A. Dabrowska, M. Łęcka, P. Suder, M. Sieńczyk, K. Pyrc, A. Lesner, One Step Beyond: Design of Substrates Spanning Primed Positions of Zika Virus NS2B-NS3 Protease. ACS Med. Chem. Lett., 2018, 9, 1025.
- [39] N. Gruba, M. Wysocka, M. Brzezińska, D. Dębowski, M. Sieńczyk, E. Gorodkiewicz, T. Guszcz, C. Czaplewski, K. Rolka, A. Lesner, Bladder cancer detection using a peptide substrate of the 20S proteasome. FEBS J., 2016, 283, 2929.
- [40] M. Wysocka, A. Romanowska, N. Gruba, M. Michalska, A. Giełdoń, A. Lesner, A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome. Int. J. Mol. Sci., 2020, 21, 2396.
- [41] N. Gruba, P. Rachubik, A. Piwkowska, A. Lesner, Analysis of urinary kallikrein-related peptidase 13 for monitoring bladder cancer. Biomarkers., 2021, 26, 770.
- [42] N. Gruba, L. Stachurski, A. Lesner, Elastolytic activity is associated with inflammation in bladder cancer. J. Biochem., 2021, 170, 547.
- [43] N. Gruba, L. Stachurski, A. Lesner, Chemical tools to monitor bladder cancer progression. Biomarkers., 2022, 1. Advance online publication
- [44] I. Audzeyenka, P. Rachubik, D. Rogacka, M. Typiak, T. Kulesza, S. Angielski, M. Rychłowski, M. Wysocka, N. Gruba, A. Lesner, M. A. Saleem, A. Piwkowska, Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867, 118723.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9da551ea-cb71-4256-9577-0ea4631a3eed