PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Rolling Tool Development in Order to Improve the Geometry of a Tube Profile and to Reduce the Wear of Mill Rolls

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing the accuracy of the geometrical parameters of tube profiles is one of the priority areas of modern tube industry. The profile of the calibers of rolls of the reeling mill exerts a significant influence over the distribution of stresses that appear in metal during the deformation process and the process of formation of the correct geometry of the obtained rough tube. The method for determining the optimal geometry of a mill roll profile has been developed. In accordance with this method the geometry of the calibers of the continuous three roll reeling mill was calculated. The research of the influence of geometrical parameters of the calibers of mill rolls on the accuracy of the obtained tube profile, the load of the rolling tool and the wear rate of the contact surface of mill rolls and a mandrel was carried out. The numerical simulation method was chosen as a research method. This method allows to carry out rather accurate analysis and to obtain reliable results on the stress-strain and thermal states of a billet during the material processing, gives the possibility to obtain numerical values of stresses, deformations, load parameters of the process, as well as allows to visualize the results that is essential for assessing the accuracy of the tube profile geometry. Numerical experiments of the elongating process of a rough tube on the three roll continuous reeling mill with different grooving of mill rolls were carried out. It was determined that using of the developed grooving will allow to get a rough tube of a higher accuracy with the minimal deviation from the shape of the profile. The use of the developed method of calculating the geometric parameters of the calibers of the continuous reeling mill will allow to obtain calibers with a high degree of resistance to wear due to the reduction of the resistance of the flow of metal and a uniform filling of the calibers in the deformation zone. The use of this grooving of mill rolls will reduce the load acting on the rolling tool during the production of hot-deformed seamless tubes.
Rocznik
Strony
321--330
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, 69 Dabrowskiego street 42-201 Czestochowa Poland
  • P.O. Sukhoi State Technical University of Gomel, Republic of Belarus
  • P.O. Sukhoi State Technical University of Gomel, Republic of Belarus
Bibliografia
  • 1.Bobarikin Yu.L., Radkin Ya. I. (2016). Adekvatnaya chislennaya model' processa raskatki gil'z na tryohvakovom nepreryvnom stane i vybor metoda ocenki iznosa instrumenta [Adequate numerical model of the shell elongating process on a three roll continuous mill and the selection of the method of the estimation of tool wear]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov: ХI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya (Minsk, September 14-16, 2016) - Minsk: PHTI NAS of Belarus;iss 3(3), pp.95. (in Russian)
  • 2. Bobarikin Yu.L., Radkin Ya. I. (2017) Determination of the optimal speed of the mandrel in the continuous reeling mill using numerical simulation. Litiyo i Metallurgiya (Foundry production and metallurgy); (1): pp. 86-92. (In Russian)
  • 3. Carvalho, R.N., Ferreira, M.A.C., Santos, D.B., Barbosa, R. (2006). Simulation of the process of hot rolling of seamless tubes. Materials Science Forum, Volume 539-543, pp. 4602-4607.
  • 4. Chen, W., Jiang, Z., Zhang, X., Zhang, H. (2014). Heat transfer model in pipe stretch reducing process. Beijing Keji Daxue Xuebao, Volume 30, pp. 289-292.
  • 5. Danchenko V.N. Kolikov A.P., Romancev B.A., Samusev C.B. (2002). Tekhnologiya trubnogo proizvodstva [Tube production technology], Moscow, Intermet inzhiniring Publ., pp. 638. (in Russian)
  • 6. Dukmasov, V.G. (2001). Improvement in efficiency of operation of tube-rolling mill with automatic mill. Metallurgist, Issue 12, pp. 41-42.
  • 7. Ji H., Liu J. , Wang B., Fu X, Xiao W., Hu Z. (2017). A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. Journal of Materials Processing Technology, Volume 240,pp. 1-11.
  • 8. Jianga Y., Tang H., Zhang C. (2019). Rotation mechanics and numerical simulation of hot rolling process under asymmetric rolls. International Journal of Mechanical Sciences, Volume 151, pp. 785-796.
  • 9. Li, X., Gao, L., Liu, Y.-G. (2011). Simultaneous residential location and travel mode choice estimation around rail transit station based on cross-nested logit model. Jilin Daxue Xuebao, Volume 41, pp. 1614-1617.
  • 10. Matveev Yu.M., Vatkin Ya.L. (1970). Kalibrovka instrumenta trubnyh stanov [Colibration of the instrument of tube rolling mills]. Moscow, Metallurgiya Publ., pp. 480. (in Russian)
  • 11. Orlov G.A. (2016). Osnovy teorii prokatki i volocheniya trub [Fundamentals of the theory of rolling and drawing tube]. Ekaterinburg, Ural. – pp. 204. (in Russian)
  • 12. Pavlov D., Erpalov M. (2019). Investigation of the influence of the frequency of rotation of the rolls on the inhomogeneity of deformation during lengthwise rolling of pipes on a stub mandrel. Materials Today Proceeding, [online] Available at: https://www.sciencedirect.com/science/article/pii/S2214785319321431?via%3Dihub [Accessed 25 July 2019].
  • 13. Pater Z., Kazanecki J., Bartnicki J. (2006). Three dimensional thermo-mechanical simulation of the tube forming process in Diescher's mill. Journal of Materials Processing Technology, Volume 177, pp. 167-170.
  • 14. Pan QK., Liang G., Ling W. (2019). A multi-objective hot-rolling scheduling problem in the compact strip production. Applied Mathematical Modelling, Volume 73, pp. 327-348.
  • 15. Qinghua H., Zhaolun H., Yan L. (2019). Experimental and numerical investigations on residual stresses in hot-bent circular steel tube. Journal of Constructional Steel Research, Volume 161, pp. 31-46
  • 16. Reggio V., McKentya F., Luc Gravela, Cortes J., Morales G., M.-A.Ladron de Guevara (2002). Computational analysis of the process for manufacturing seamless tubes. Applied Thermal Engineering, Volume 22, pp. 459-470.
  • 17. Tang D., Fan X., Fang F., Li D., Peng Y., Wang H. (2018). Microstructure and mechanical properties development of micro channel tubes in extrusion, rolling and brazing. Materials Characterization, Volume 142, pp. 449-457.
  • 18. Wanga F., Shuanga Y., Hua J.-H., Wanga O.-H., Suna J.-C. (2014). Explorative study of tandem skew rolling process for producing seamless steel tubes. Journal of Materials Processing Technology, Volume 214, pp. 1597-1604.
  • 19. Yang C., Ma J., Hu Z. (2017). Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. Journal of Materials Processing Technology, Volume 239, pp.346-358.
  • 20. Zhang, Z., Li, Y., Kong, X., Manabe, K.-I., Wang, N. (2014). Effect of intercritical annealing time on microstructure and axial mechanical properties of TRIP seamless steel tube. Steel Research International, Volume 85, pp. 632-639.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9da4806d-7a36-424c-a52b-ee0d22d4a6ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.