Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The flotation separation of chalcopyrite and galena presents significant challenges due to their similar surface properties, resulting in comparable floatability. In the process of flotation separation, conventional depressants encounter issues related to high toxicity or limited effectiveness. In this paper, it was found that the floatability of galena decreased significantly after pretreatment with potassium peroxymonosulfate (PMS) oxidation. The influence on chalcopyrite, however, is relatively insignificant. In flotation tests of mixed binary minerals, without PMS oxidation, the two minerals are basically floating; When the pH is 8 and the dosage of PMS is 0.375 g/L, it is possible to obtain a flotation concentrate with a Pb grade of 26.78% and recovery of 36.10%, as well as a Cu grade of 21.53% and recovery of 83.66%, when the raw ore contains Pb 44.88% and Cu 15.57%. The oxidation pretreatment method enables the separation of galena and chalcopyrite without the need for a depressant. The XPS and AFM measurements revealed a significantly higher oxidation degree of galena compared to chalcopyrite after treatment with PMS, indicating a notable difference in their floatability. Consequently, the separation of chalcopyrite and galena is greatly facilitated by this distinction. In conclusion, PMS can be considered as a novel oxidant that provides an effective approach for selectively floating chalcopyrite and galena.
Rocznik
Tom
Strony
art. no. 195497
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Bibliografia
- CAO, M., LIU, Q., 2006. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation—the role of coagulation. J. Colloid Interface Sci. 301(2), 523–531.
- CHEN, Y., FENG, B., GUO, Y., WANG, T., ZHANG, Y., ZHONG, C., WANG, H., 2021. The role of oxidizer in the flotation separation of chalcopyrite and galena using sodium lignosulfonate as a depressant. Miner. Eng. 172, 107160.
- DA, S., WATERS, K., 2018. The effects of microwave irradiation on the floatability of chalcopyrite, pentlandite and pyrrhotite. Adv. Powder Technol. 29, 3049–3061.
- HIRAJIMA, T., MIKI, H., SUYANTARA, G., MATSUOKA, H., ELMAHDY, A., SASAKI, K., IMAIZUMI, Y., KUROIWA, S., 2017. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng. 100, 83–92.
- HIRAJIMA, T., MORI, M, ICHIKAWA, O., SASAKI, K., MIKI, H., FARAHAT, M., SAWADA, M., 2014. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment. Miner. Eng. 66, 102–111.
- HUANG, P., CAO, M., LIU, Q., 2012. Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides. Int. J. Miner. Process. 106, 8–15.
- HUANG, P., WANG, L., LIU, Q., 2014. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 128, 6–15.
- HUANG, X., JIA, Y., CAO, A., WANG, S., MA, X., ZHONG, H., 2019. Investigation of the interfacial adsorption mechanisms of 2- hydroxyethyl dibutyl dithiocarbamate surfactant on galena and sphalerite. Colloids Surf. APhysicochem. Eng. Asp. 583, 123908.
- LEI, H., JIANG, T., GUO, X., TIAN, Q., ZHONG, S., DONG, L., QIN, H., LIU, Z., BRIAN, M., 2023. Sustainable processing of gold cyanide tailings: Reduction roasting, mechanical activation, non-cyanide leaching, and magnetic separation. Hydrometallurgy. 217, 106028.
- LIU, G., QIU, Z., WANG, J., LIU, Q., XIAO, J., ZENG, H., ZHONG, H., XU, Z., 2015. Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS. J. Colloid Interface Sci. 437, 42–49.
- LIU, Q., LASKOWSKI, J., 1989. The role of metal hydroxides at mineral surfaces in dextrin adsorption, II. Chalcopyrite-galena separations in the presence of dextrin. Int. J. Miner. Process. 27(1–2), 147–155.
- LIU, Q., ZHANG, Y., 2000. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Miner. Eng. 13(13): 1405–1416.
- MIAO, Y., WEN, S., SHEN, Z., FENG, Q., ZHANG, Q., 2022. Flotation separation of chalcopyrite from galena using locust bean gum as a selective and eco-friendly depressant. Sep. Purif. Technol. 283, 120173.
- MU, Y., PENG, Y., LAUTEN, R., 2016. The depression of pyrite in selective flotation by different reagent systems–A Literature review. Miner. Eng. 96, 143–156.
- OZUN, S., HASSAS, B., MILLER, J., 2019. Collectorless flotation of oxidized pyrite. Colloids Surf. A. 561, 349–356.
- RATH, R., SUBRAMANIAN, S., PRADEEP, T., 2000. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. J. Colloid Interface Sci. 229(1), 82–91.
- SU, C., CAI, J., YU, X., PENG, R., ZHENG, Q., MA, Y., LIU, R., SHEN, P., LIU, D., 2022a. Effect of pre-oxidation on galena in the flotation separation of chalcopyrite from galena with calcium lignosulfonate as depressant. Miner. Eng. 182, 107520.
- SU, C., CAI, J., YU, X., PENG, R., ZHENG, Q., MA, Y., LIU, R., SHEN, P., LIU, D., 2022b. Effect of pre-oxidation on galena in the flotation separation of chalcopyrite from galena with calcium lignosulfonate as depressant. Miner. Eng. 182, 107520.
- SUYANTARA, G., HIRAJIMA, T., MIKI, H., SASAKI, K., YAMANE, M., TAKIDA, E., KUROIWA, S., IMAIZUMI, Y., 2018a. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Miner. Eng. 122, 312–326.
- SUYANTARA, G., HIRAJIMA, T., MIKI, H., SASAKI, K., YAMANE, M., TAKIDA, E., KUROIWA, S., IMAIZUMI, Y., 2018b. Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite. Colloids Surf. A. 554, 34–48.
- TANG, X., CHEN, Y., LIU, K., ZENG, G., PENG, Q., LI, Z., 2019. Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere. Colloids Surf. A Physicochem. Eng. Asp. 583, 123958.
- TANG, X., HUANG, X., LIU, K., FENG, Q., LIU, Z., AO, M., 2018. Synthesis of magnetically separable MnO2/Fe3O4/Silica nanofiber composite with enhanced Fenton-like catalytic activity for degradation of Acid Red 73. Surface&Coatings Technol. 354, 18-27.
- VELASQUEZ, P., GOMEZ, H., RAMOS-BARRADO, J., LEINEN, D., 1998. Voltammetry and XPS analysis of a chalcopyrite CuFeS2 electrode. Colloids Surf. A. 140, 369–375.
- WANG, C., LIU, R., SUN, W., JING, N., XIE, F., ZHAI, Q., HE, D., 2021. Selective depressive effect of pectin on sphalerite flotation and its mechanisms of adsorption onto galena and sphalerite surfaces. Miner. Eng. 170, 106989.
- WEI, G., FENG, B., PENG, J., ZHANG, W., ZHANG, X., 2019. Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. J. Mater. Res. Technol. 8(1), 697–702.
- XIE, H., LIU, Y., RAO, B., WU, J., GAO, L., CHEN, L., TIAN, X., 2021. Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Sep. Purif. Technol. 267, 118621.
- YANG, S., TANG, X., CHEN, R., FAN, X., MIAO, J., LUO, X., 2023. Application of maleic acid-acrylic acid copolymer as an eco-friendly depressant for effective flotation separation of chalcopyrite and galena. Minerals,. 13(2), 191.
- YANG, S., XU, Y., LIU, C., AI, G., HUANG, L., YU, H., 2020. A novel method to achieve the flotation of pyrite from lizardite slime without collector or depressant. Miner. Eng. 157, 106580.
- YANG, X., HUANG, X., QIU, T., 2016. Activation-flotation kinetics of depressed marmatite and chalcopyrite in cyanidation tailings using sodium hypochlorite as activator. Miner. Metall. Process. 33, 131–136.
- YANG, Z., GENG, L., ZHOU, H., LIU, Z., XIE, F., YANG, S., LUO, X., 2022. Improving the flotation separation of chalcopyrite from galena through high-temperature air oxidation pretreatment. Miner. Eng. 176, 107350.
- YI, G., MACHA, E., VAN, D., MACHA, R., MCKAY. T., FREE, M., 2021. Recent progress on research of molybdenite flotation: a review. Adv. Colloid Interface Sci. 295, 102466.
- ZHANG, J., ZHANG, X., WEI, X., CHENG, S., HU, X., LUO ,Y., XU, P., 2022b. Selective depression of galena by sodium polyaspartate in chalcopyrite flotation. Miner. Eng. 180, 107464.
- ZHANG, L., GUO, X., TIAN, Q., LI, D., ZHONG, S., QIN, H., 2022a. Improved thiourea leaching of gold with additives from calcine by mechanical activation and its mechanism. Miner. Eng. 178, 107403.
- ZHANG, X., ZHU, Y., ZHENG, G., HAN, L., MCFADZEAN, B., QIAN, Z., PIAO, Y., O'CONNOR, C., 2019. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system. Miner. Eng. 134, 291-299.
- ZHANG, Z., WANG, Y., LIU, G., LIU, S., LIU, J., YANG, X., 2020. Separation of chalcopyrite from galena with 3-amyl-4-amino-1,2,4-triazole-5-thione collector: Flotation behavior and mechanism. J. Ind. Eng. Chem. 92, 210-217.
- ZHU, H., YANG, B., MARTIN, R., ZHANG, H., HE, D., LUO, H., 2022. Flotation separation of galena from sphalerite using hyaluronic acid (HA) as an environmental-friendly sphalerite depressant. Miner. Eng. 187, 107771.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9da3bc6e-5a7a-4268-8824-8044a42815fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.