PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical discrepancies of using a nonconservative formulation of the compressible gas flow model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigated the shock phenomenon in gas pipeline systems. We particularly address the numerical discrepancies introduced when using a primitive variable-based formulation of the compressible gas flow model. For the analysis, we compared two different schemes, namely, van Leer’s second-order Monotonic Upstream-centered Scheme for Conservation Laws scheme (TVD-MUSCL) together with Roe’s superbee slope limiter and the fifth-order accurate finite volume weighted essentially non-oscillatory scheme (WENO5-Z). For the numerical flux, we implemented the Rusanov solver. The time stepping was done with a strong stability preserving Runge-Kutta method. The method of manufactured solutions was used to verify the code accuracy. Based on a series of numerical experiments, we showed that the local errors become more visible if we use the WENO5-Z reconstruction.
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Gas Engineering Group Warsaw, Poland
Bibliografia
  • [1] Subani, N., & Amin N. (2015). Analysis of water hammer with different closing valve laws on transient flow of hydrogen-natural gas mixture. Abstract and Applied Analysis, 510675, 1-12, DOI: 10.1155/2015/510675.
  • [2] Uilhoorn, F.E. (2016). Estimating rapid flow transients using extended Kalman filter. Silesian Journal of Pure and Applied Mathematics, 6, 1, 97-110.
  • [3] Gyrya, V., & Zlotnik, A. (2019). An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks. Applied Mathematical Modelling, 65, 34-51, DOI: 10.1016/j.apm.2018.07.051.
  • [4] Kiuchi, T. (1994). An implicit method for transient gas flows in pipe networks. International Journal of Heat and Fluid Flow, 15, 5, 378-383, DOI: https://doi.org/10.1016/0142-727X(94) 90051-5.
  • [5] Abbaspour, M., & Chapman, K.S. (2008). Nonisothermal transient flow in natural gas pipeline. Journal of Applied Mechanics, 75, 3, 1-8, DOI:10.1115/1.2840046.
  • [6] Ding, Y., & Li, Y. (2010). Study on effect of valve operation on transient flow in natural gas pipelines. International Conference on Digital Manufacturing & Automation, Changsha, 463-466, DOI: 10.1109/ICDMA.2010.359.
  • [7] Greyvenstein, G.P. (2002). An implicit method for the analysis of transient flows in pipe networks. Numerical Methods in Engineering, 53, 5, 1127-1143, DOI: 10.1002/nme.323.
  • [8] Chaczykowski, M. (2010). Transient flow in natural gas pipeline - The effect of pipeline thermal model. Applied Mathematical Modelling, 34, 4, 1051-1067, DOI: 10.1016/j.apm.2009.07.017.
  • [9] Hou, T., & Le Floch, P.G. (1994). Why nonconservative schemes converge to wrong solutions: error analysis. Mathematics of Computation, 62, 206, 497-530, DOI: 10.2307/2153520.
  • [10] Toro, E.F. (1994). Defects of Conservative Approaches and Adaptive Primitive-Conservative Schemes for Computing Solutions to Hyperbolic Conservation Laws. Technical report MMU 9401, Department of Mathematics and Physics, Manchester Metropolitan University, UK.
  • [11] Toro, E.F. (1995). On Adaptive Primitive-Conservative Schemes for Conservation Laws. M.M. Hafez (Ed.), Sixth International Symposium on Computational Fluid Dynamics, Vol. 3, LakeTahoe, Nevada, USA, 288-1293.
  • [12] Toro, E.F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction. 3rd Edition, Berlin, Heidelberg: Springer-Verlag.
  • [13] Jiang, G.-S., & Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 1, 202-228, DOI:10.1006/jcph.1996.0130.
  • [14] Borges, R., Carmona, M., Costa, B., & Don, W.S. (2008). An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227, 6, 3191-3211, DOI: 10.1016/j.jcp.2007.11.038.
  • [15] Rusanov, V. (1961). Calculation of intersection of non-steady shock waves with shock waves with obstacles. USSR Computational Mathematics and Mathematical Physics, 1, 267-279.
  • [16] Rusanov, V. (1962). The calculation of the interaction of non-stationary shock waves and obstacles. USSR Computational Mathematics and Mathematical Physics, 1, 2, 304-320.
  • [17] Shu, C.-W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shockcapturing schemes. Journal of Computational Physics, 77, 2, 439-471, DOI: 10.1016/0021- 9991(88)90177-5.
  • [18] van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov method. Journal of Computational Physics, 32, 101-136, DOI: 10.1016/0021-9991(79)90145-1.
  • [19] Sweby, P.K. (1984). High resolution schemes using flux limiters for hyperbolic conservationlaws. SIAM Journal of Numerical Analysis, 21, 5, 995-1011.
  • [20] Hesthaven, J.S. (2018). Numerical Methods for Conservation Laws: From Analysis to Algorithms: From Analysis to Algorithm, SIAM.
  • [21] Griffiths, G., & Schiesser, W. (2011). TravelingWave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press.
  • [22] Henrick, A.K., Aslam, T.D., & Powers, J.M. (2005). Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 207, 2, 542-567, DOI: 10.1016/j.jcp.2005.01.023.
  • [23] Roy, C.J. (2005). Review of code and solution verification procedures for computational simulation. Journal of Computational Physics, 205, 1, 131-156, DOI: 10.1016/j.jcp.2004.10.036
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9da0c071-949a-48fc-b919-6e98be61924b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.