
Journal of Applied Mathematics and Computational Mechanics 2019, 18(4), 101-113
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2019.4.10 e-ISSN 2353-0588

NUMERICAL DISCREPANCIES OF USING A NONCONSERVATIVE
FORMULATION OF THE COMPRESSIBLE GAS FLOW MODEL

Ferdinand E. Uilhoorn

Warsaw University of Technology, Gas Engineering Group
Warsaw, Poland

ferdinand.uilhoorn@pw.edu.pl

Received: 16 July 2019; Accepted: 15 January 2020

Abstract. In this article, we investigated the shock phenomenon in gas pipeline systems.
We particularly address the numerical discrepancies introduced when using a primitive
variable-based formulation of the compressible gas flow model. For the analysis, we com-
pared two different schemes, namely, van Leer’s second-order Monotonic Upstream-centered
Scheme for Conservation Laws scheme (TVD-MUSCL) together with Roe’s superbee slope
limiter and the fifth-order accurate finite volume weighted essentially non-oscillatory
scheme (WENO5-Z). For the numerical flux, we implemented the Rusanov solver. The time
stepping was done with a strong stability preserving Runge-Kutta method. The method of
manufactured solutions was used to verify the code accuracy. Based on a series of numerical
experiments, we showed that the local errors become more visible if we use the WENO5-Z
reconstruction.
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1. Introduction

Theoretical and computational fluid dynamics in pipeline systems have a very
broad interest because of their practical applications. Several examples are oil and gas
pipelines, piping systems under pressure in hydroelectric power stations and urban
water and heating networks. In such systems, it is of utmost importance to understand
the dynamics in the presence of shocks because it enables us to prevent or mitigate
excessive high or low pressures in the system. This phenomenon, also known as the
fluid hammer is often a result of rapid valve closure.

Most numerical models that simulate shock behavior in gas pipelines as a result
of rapid valve closure use a primitive variable-based formulation [1–7].1 The non-
linear hyperbolic partial differential equations (PDEs) describing fluid hammer for
compressible and incompressible fluids are mostly written in terms of primitive vari-
ables, such as flow rate, or velocity and pressure because these variables are typically

1Although beyond the scope of this work, it also concerns water hammer simulations.
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measured. From a physical point of view, these variables are not conserved, therefore
the system is still nonconservative. In the present study, we consider the well-known
and frequently used isothermal gas flow model that is formulated as follows:

∂ p
∂ t

+
c2

A
∂ ṁ
∂x

= 0, (1)

∂ ṁ
∂ t

+
∂

∂x

(
ṁ2c2

pA

)
+A

∂ p
∂x

+
frc2

2dA
ṁ2

p
= 0, (2)

for x ∈ R, t > 0 with pressure p, speed of sound c, cross-sectional area A, mass flow
rate ṁ, diameter d and friction factor fr. This set of equations in a nonconservative
form with or without the convective inertia term is frequently used in engineering
practice. For more accurate predictions, the energy equation is included [5, 8] but
even then we still have a nonconservative form.

In [9–12], it was shown that such primitive variable-based expressions are valid if
we have smooth solutions but not in the presence of shocks because nonconservative
formulations converge to wrong weak solutions. This was demonstrated by imposing
discontinuities in the initial conditions. In this work, we examine a situation in which
we have discontinuities in the boundary conditions at the outlet node. This appears
when we are simulating hydraulic shocks caused by rapid valve closure, for example.
Thus we solve Eqs. (1) and (2) and their equivalent form, namely the one that is
physically conserved and we compare the results.

The finite volume method, is in general, the method of choice to handle shock
waves described by hyperbolic PDEs because of the shock-capturing properties. It is
characterized by its accuracy, efficiency and robustness when solving the conserva-
tion laws. For both formulations, we examine two reconstruction schemes. First, we
apply van Leer’s second-order TVD-MUSCL (Monotonic Upstream-centered Scheme
for Conservation Laws) scheme. Here spurious oscillations are avoided by using
a total variation diminishing (TVD) limiter. This scheme is second-order accurate
if we have smooth solutions but degenerates to first order at shocks. The fifth-order
accurate finite-volume weighted essentially non-oscillatory (WENO) scheme [13] is
the second scheme we implement. In particular WENO-Z [14], which shows less
dissipation and higher resolution compared to the classical WENO reconstruction.
It has fifth-order convergence not only in smooth regions but also at critical points.
The reason for using these schemes is, that they satisfactorily handled shocks and
sharp interfaces. For the numerical flux, we use the Rusanov Riemann solver [15,16].
The time integration is done with the three-stage third-order strong stability pre-
serving (SSP) Runge-Kutta (RK) scheme [17]. Numerical experiments are done for
a pipeline section with a shut-off valve at the outlet node.
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2. Mathematical model

The compressible flow equations (1) and (2) in vector form can be written as
follows:

ut + f (u)x = s(u), (3)

with

u =

(
p
ṁ

)
, f (u) =

 c2

A
ṁ

ṁ2c2

pA
+Ap

 , s(u) =

 0

− frc2

2dA
ṁ2

p

 ,

where f (u) and s(u) are the flux and source term, respectively. According to Toro
[12], such formulation is conservative in a mathematical sense, but not from a phys-
ical perspective. The conservation principle for pressure does not make sense, phys-
ically. To make the set of equations physically conserved, we use the ideal equation
of state p/ρ = c2 with ρ denoted as the density. This closure relation enables us to
write the system as follows:

wt +F(w)x = S (w), (4)

with

w =

(
ρ

ρv

)
, F(w) =

 ρv
(ρv)2

ρ
+ c2

ρ
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2d
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whereas the state variables are conserved. The Jacobian matrix A(w) = ∂F(w)/∂w
is defined as

A(w) =
[

0 1
c2− v2 2v

]
, (5)

where v is the velocity. The eigenvalues of matrix A are λ1 = v− c and λ2 = v+ c
with corresponding right eigenvectors

R =

[
1 1

v− c v+ c

]
. (6)

The system is hyperbolic because all eigenvalues of the flux Jacobian matrix are real
and the set of corresponding eigenvectors is complete. The same results are obtained
for the nonconservative formulation (3).
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3. Numerical method

We start to discretize the governing equations on the domain D = {x∈ [0,L]} into
N− 1 equal spaced cells, i.e., ∆x = L/(N− 1) where L is the pipe length. For each
cell, we define midpoint xi and its edges xi− 1

2
and xi+ 1

2
. The semi-discretized form of

flow model (4) but similar for Eq. (3) can be written as

d
dt

wi =−
1
∆x

(Fi+ 1
2
−Fi− 1

2
)+Si, (7)

where wi approximates the cell average of the dependent variables. The numerical
flux Fi± 1

2
is defined at the left and right cell boundaries and Si is the source term.

Equation (7) can be transformed in the form

dw
dt

= F (w), t ∈ [0, t f ], (8)

where the nonlinear operator F (w) reads

F (w) =− 1
∆x

(Fi+ 1
2
−Fi− 1

2
)+Si. (9)

3.1. Temporal discretization

Assuming that the approximation at time instant n is known, then using the SSPRK(3,3)
scheme we obtain the solution at n+1 as follows:
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(10)

For the numerical stability, the time step depends on the Courant number:

C = max(|λ |) ∆t
∆x

, (11)

with C 6 1 and λ is the maximum value over all eigenvalues in all cells.

3.2. MUSCL-TVD scheme

The MUSCL-TVD reconstruction of [18] assumes a piecewise-linear interpola-
tion from the average values. The reconstruction for each component is defined by

wL
i+1/2 = wi +

1
2

φ(θi)(wi+1−wi), (12)



Numerical discrepancies of nonconservative formulation 105

and

wR
i+1/2 = wi+1−

1
2

φ(θi)(wi+2−wi+1), (13)

where θ is

θi =
wi−wi−1

wi+1−wi
, (14)

and φ is a slope limiter function [19] that ensures TVD, in the sense that it avoids
spurious oscillations around discontinuities. The anti-diffusion flux is determined by
φ(θ) and when its value increases less numerical dissipation is observed but more
dissipation is expected when it decreases. In the former situation, the resolution is
higher at the discontinuities or shocks. This scheme is second-order accurate for
smooth parts of the domain but reduces to a first order at local smooth extrema [20].
Examples of most usual limiter functions are

(i) van Leer limiter: φ(θ) =
θ + |θ |
1+ |θ |

,

(ii) monotonized central (MC) limiter:
φ(θ) = max(0,min(2θ ,(1+θ)/2,2)),

(iii) van Albada limiter: φ(θ) =
θ 2 +θ

θ 2 +1
,

(iv) minmod limiter: φ(θ) = max(0,min(1,θ)),

(v) superbee limiter:
φ(θ) = max(0,min(2θ ,1),min(θ ,2)).

In this work, we used Roe’s superbee flux limiter because it is considered as a good
compromise between accuracy and computational efficiency [21].

3.3. WENO5-Z scheme

The classical fifth-order WENO reconstruction developed by [13] can be written
as
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respectively. The nonlinear weights are defined as

wr =
αr

α0 +α1 +α2
, αr =

dr

(ε +βr)
2 , r = 0,1,2, (17)

with the following smoothness indicators
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13
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2 ,
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13
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4
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2 ,
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4
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2 .

(18)

By symmetry, the optimal linear weights for wR
i− 1

2
at xi− 1

2
are d0 = 3/10, d1 = 3/5

and d2 = 1/10 and for wL
i+ 1

2
at xi+ 1

2
we define d0 = 1/10, d1 = 3/5 and d2 = 3/10.

To avoid division by zero, we set ε = 10−6.
Here, the choice of the nonlinear weights and smoothness indicators in the clas-

sical WENO scheme are not unique and can be modified to improve the accuracy
at the critical points. In [22] it was shown that for the classical fifth-order WENO
scheme [13], the nonlinear weights do not satisfy the conditions for fifth-order con-
vergence. To overcome this shortcoming, a mapping function was introduced lead-
ing to the so-called WENO-M scheme but at the cost of computation time. There-
fore, Borges et al. [14] developed a more efficient scheme, denoted as WENO-Z,
which contains different smoothness indicators. This scheme improved the conver-
gence properties and reduced the numerical dissipation at shocks. In this reconstruc-
tion, the nonlinear weights are defined as follows:

wz
r =

αz
r

2
∑

l=0
α

z
l

, α
z
r = dr

(
1+
(

τ5

βr + ε

)q)
, (19)

with τ5 = |β0−β2| and r = {0,1,2}, q = 1,2, .... Fourth order accuracy is achieved
for q = 1 while if q = 2 fifth order accuracy is ensured at the critical points.

3.4. Rusanov flux

The left and right states are constructed by the schemes at the cell edges. In this
work, we use the Rusanov solver [15, 16] to calculate the corresponding fluxes at
these cell boundaries. This solver is defined as follows:

Fi+ 1
2
=

1
2
(
FR +FL)− ψi+ 1

2

2

(
wR

i+ 1
2
−wL

i+ 1
2

)
, (20)
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where ψi+ 1
2

is the local wave speed between cells i and i+1. Here FR = F(wR
i+ 1

2
) and

FL = F(wL
i+ 1

2
) refer to flux using the right and left reconstructed state, respectively.

4. Code verification

In this section, we carry out a convergence study to verify whether the schemes
are implemented correctly. We use the method of manufactured solutions because
it utilizes exact solutions and is therefore considered as most rigorous. First, a priori
analytic physically solutions are defined. We use the following functions

ρ(x, t) = ρ0 +α0 sin
(

2πx
L

)
cos
(

2πt
T0

)
, (21)

ρv(x, t) = ρv0 +
α0L
T0

cos
(

2πx
L

)
sin
(

2πt
T0

)
. (22)

The manufactured solutions are substituted into model (3). This yields into a modified
system that enables us to determine the analytical solution of the source term denoted
here as h(x, t). For more details about this procedure, the reader is referred to Roy
[23]. Hence, we write

ut + f (u)x− s(u) = h(x, t) . (23)

The governing equations are then discretized and solved on different meshes.
The discretization error was calculated using the L2-norm of the error whereas the
exact solutions are obtained from the manufactured solutions. The results are shown
in Figure 1 for both schemes using the conservative formulation. It shows that the
order of accuracy decays according to the theoretical ones. For the TVD-MUSCL
and WENO5-Z reconstructions, we computed a slope of 1.98 and 5.04, respectively.

5. Numerical results

In this section, we conduct a series of numerical experiments for a 20 km pipeline
with a diameter of 0.5 m. Other model parameters are c= 348.5 ms−1 and fr = 0.008.
After 5 min, the valve at the outlet node was instantaneously closed for 20 min
and then opened again. The mass flow rate increased from zero back to 70 kgs−1

(see Figure 2). The pressure in the pipeline is maintained at 5.0 MPa. The initial
conditions are defined as

∂ ṁ
∂x

(x,0) = 0,
∂ p
∂x

(x,0) =− frc2ṁ2 p
2d(A2 p2− c2ṁ2)

, (24)
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and the boundary conditions can be written as

p(0, t) = p0(t), ṁ(L, t) = ṁL(t), (25)

where p0(t) = 5.0 MPa and

ṁL(t) =


ṁ0, if t/s 6 300 s,
0, if 300 < t/s 6 1500,
ṁ0, otherwise,

(26)

with ṁ0 = 70 kgs−1. Of course, one can argue if such an instantaneous valve closure
is practically realistic. Moreover, different valve closure laws will show different re-
sults. Nevertheless, our main goal is to demonstrate the consequences of using a non-
conservative expression of the governing equations while using two different types of
reconstruction schemes with a different order of accuracy. The transformation to the
conserved variables ρ and ρv is done using the equation of state and cross-sectional
area. For comparison, we need to use a fixed time step because minor differences
might occur if the time step is based on the Courant number. The spatial-temporal
evolution of pressure and mass flux is illustrated in Figure 3 and clearly shows the
discontinuous character of the solutions. The gas adjacent to the valve was brought
immediately to rest when the valve closed. This results in a backward pressure and
flow rate wave. The reverse flow decreases the pressure and causes oscillations
in pressure and flow.

To indicate the numerical consequences of using the nonconservative formulation,
the maximum of the absolute and relative errors were calculated. This is done as
follows
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Fig. 1. Convergence for TVD-MUSCL and WENO5-Z reconstructions with parameters: C = 0.5,
α0 = 10−4, L = 0.1, ρ0 = 40 and ρv0 = 120 and T0 = 0.1. (– –) TVD-MUSCL (– –) WENO5-Z
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eabs = max
i j

(|ync,i j− yc,i j|) , (27)

erel = max
i j

(
|ync,i j− yc,i j|
|yc,i j|

)
, (28)

where ync and yc represent the solutions of the nonconservative and conservative
expressions, respectively. The solutions from the conservative expression are con-
sidered as a reference situation but are not exact. The maximum errors for differ-
ent grid densities and time steps in the spatial and temporal domain are shown in
Tables 1-4.

Based on the results, we conclude that if we use the TVD-MUSCL scheme the re-
sults for the conservative and nonconservative formulation are almost equivalent even

Fig. 2. Boundary condition for the mass flow rate at the valve

Table 1. Numerical discrepancies for different number of discretization points
using MUSCL-TVD and ∆t = 0.05 s

N ep/% eṁ/% max |ep|/Pa max |eṁ|/kgs−1

40 1.29×10−12 9.37×10−9 6.43×10−8 5.14×10−11

80 2.82×10−12 3.84×10−10 1.41×10−7 7.41×10−11

160 4.23×10−11 2.55×10−7 2.11×10−6 1.48×10−9

320 1.01×10−11 2.67×10−10 4.73×10−7 1.86×10−10

Table 2. Numerical discrepancies for different time steps
using TVD-MUSCL and N = 320

∆t/s ep/% eṁ/% max |ep|/Pa max |eṁ|/kgs−1

0.025 8.50×10−11 3.97×10−7 4.25×10−6 2.28×10−9

0.050 1.01×10−11 2.67×10−10 4.73×10−7 1.86×10−10

0.075 4.29×10−12 1.71×10−10 2.11×10−7 1.20×10−10

0.1 1.89×10−12 5.64×10−11 9.41×10−8 3.92×10−11
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Fig. 3. Spatial-temporal evolution of pressure and mass flow rate

Table 3. Numerical discrepancies for different number of discretization points
using WENO and ∆t = 0.05 s

N ep/% eṁ/% max |ep|/Pa max |eṁ|kgs−1

40 5.46×10−4 0.27 27.2 1.58×10−2

80 1.01×10−3 1.08 50.5 2.44×10−2

160 1.32×10−3 1.55 65.8 3.51×10−2

320 2.00×10−3 0.07 95.0 3.92×10−2

Table 4. Numerical discrepancies for different time steps
using WENO and N = 320

∆t/s ep/% eṁ/% max |ep|/Pa max |eṁ|/kgs−1

0.025 1.89×10−3 6.35×10−2 89.4 3.69×10−2

0.050 2.00×10−3 6.59×10−2 95.0 3.92×10−2

0.075 1.57×10−3 1.88 74.3 3.64×10−2

0.1 1.35×10−3 2.07 67.3 4.34×10−2
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Fig. 4. Error evolution using TVD-MUSCL scheme with N = 160 and ∆t = 0.05 s

Fig. 5. Error evolution using WENO5-Z scheme with N = 160 and ∆t = 0.05 s

at the discontinuities. The numerical discrepancies at each time step and grid point
for this scheme are illustrated in Figure 4. Although the differences are not signifi-
cant, we still see that higher values are observed at the discontinuities. This scheme
is first order accurate at critical points. If we repeat the computations for WENO-Z,
which is fifth order accurate, we observe more significant errors, especially for the
mass flow rate (see Fig. 5). All maximum values were recorded near the moment of
the valve opening or closing but at different grid nodes. A more dense grid causes
an increase in pressure error. For the mass flow rate, we observe an increasing trend
only up to and including N = 160. If we double the number of grid points, we see
a steep decline in error for the mass flow rate but the pressure error increases simulta-
neously. It should be noted that the maximum values with N 6 160 were recorded in
the neighborhood of valve opening (t ≈ 25.9 min). For N = 320 the maximum errors
were observed near valve closure (t ≈ 5.4 min). If we set the number of grid points
to N = 320 and vary the time step, we see that a larger step increases the error for
the mass flow rate while it decreases for the pressure. Depending on the time step,
the maximum values were observed near the valve opening and closure.



112 F.E. Uilhoorn

6. Conclusions

In this work, we adopted the compressible gas flow model that was approximated
using the second-order TVD-MUSCL and fifth-order accurate WENO5-Z schemes.
The Rusanov scheme was used to compute the fluxes at the cell edges. Two possible
formulations of the gas flow model, namely the primitive variable-based and physical
conserved one were investigated. Results showed that the numerical discrepancies
between the two formulations is small if we use the classical TDV-MUSCL scheme.
The differences become much more significant if we apply the fifth-order accurate
WENO5-Z scheme. Hence, it seems that low order schemes are not able to detect
the discrepancy between these two formulations. Although the primitive variable
expression of the flow model is frequently used while simulating rapid valve closure,
the physical conservative formulation is preferred. On the other hand, the local errors
remain relatively small.
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