PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coastal hydrodynamics beyond the surf zone of the south Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents experimental and theoretical investigations of hydrodynamic processes in a coastal region located close to the seaward boundary of the surf zone. The analysis is based on field data collected near Lubiatowo (Poland) by measuring equipment operated simultaneously by the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) and the Maritime Institute in Gdańsk (IMG). The data consist of wind velocity and direction measured at the IBW PAN Coastal Research Station (CRS) in Lubiatowo, deep-water wave buoy records, current profiles and sea bottom sediment parameters. Mean flow velocities measured in the entire water column have almost the same direction as wind. Nearbed flow velocities induced by waves and currents, as well as bed shear stresses, are modelled theoretically to determine sediment motion regimes in the area. It appears that the nonlinear wave-current interaction generates bed shear stresses greater than those that would result from the superposition of the impacts of waves and currents separately. The paper discusses the possibility of occasional intensive sediment transport and the occurrence of distinct seabed changes at greater coastal water depths adjacent to the surf zone. It was found that this can happen under the joint influence of waves and wind-driven currents.
Czasopismo
Rocznik
Strony
264--276
Opis fizyczny
Bibliogr. 28 poz., fot., mapy, rys., tab., wykr.
Twórcy
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
autor
  • Maritime Institute, Gdańsk, Poland
  • Maritime Institute, Gdańsk, Poland
Bibliografia
  • [1] Belibassakis, K. A., Karathanasi, F. E., 2017. Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia 59 (3), 350-364, http://dx.doi.org/10.1016/j.oceano.2017.04.001.
  • [2] Birkemeier, W. A., 1985. Field data on seaward limit of profile change. J. Waterway Port Coast. Ocean Eng. 111 (3), 598-602, http://dx.doi.org/10.1061/(ASCE)0733-950X(1985)111:3(598).
  • [3] Carbajal, N., Montaño, Y., 2001. Comparison between predicted and observed physical features of sandbanks. Estuar. Coast. Shelf Sci. 52 (14), 435-443, http://dx.doi.org/10.1006/ecss.2000.0760.
  • [4] Cerkowniak, G. R., Ostrowski, R., Stella, M., 2015a. Depth of closure in the multi-bar non-tidal nearshore zone of the Baltic Sea: Lubiatowo (Poland) case study. Bull. Maritime Inst. Gdańsk. 30 (1), 180-188, http://dx.doi.org/10.5604/12307424.1185577.
  • [5] Cerkowniak, G. R., Ostrowski, R., Stella, M., 2015b. Wave-induced sediment motion beyond the surf zone: case study of Lubiatowo (Poland). Arch. Hydro-Eng. Environ. Mech. 62 (1-2), 27-39, http://dx.doi.org/10.1515/heem-2015-0017.
  • [6] Cerkowniak, G. R., Ostrowski, R., Pruszak, Z., 2017. Application of Dean's curve to investigation of a long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia 59 (1), 18-27, http://dx.doi.org/10.1016/j.oceano.2016.06.001.
  • [7] Dean, R. G., 2002. Beach Nourishment. Theory and Practice. Advanced Series on Ocean Engineering, vol. 18. World Sci. Publ. Co. Pte. Ltd., 399 pp.
  • [8] Fredsøe, J., 1984. Turbulent boundary layer in combined wave-current motion. J. Hydraul. Eng. 110 (8), 1103-1120, http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103).
  • [9] Hallermeier, R. J., 1978. Uses for a calculated limit depth to beach erosion. In: Proceedings, 16th Coastal Engineering Conference. American Society of Civil Engineers, 1493-1512.
  • [10] Hallermeier, R. J., 1981. A profile zonation for seasonal sand beaches from wave climate. Coast. Eng. 4 (3), 253-277.
  • [11] Hulscher, S. J. M. H., van den Brink, G. M., 2001. Comparison between predicted and observed sand waves and sand banks in the North Sea. J. Geophys. Res. 106 (C5), 9327-9338, http://dx.doi.org/10.1029/2001JC900003.
  • [12] Kaczmarek, L. M., 1995. Nonlinear effects of waves and currents on moveable bed roughness and friction. Arch. Hydro-Eng. Environ. Mech. 42 (1-2), 3-27.
  • [13] Kaczmarek, L. M., 1999. Moveable Sea Bed Boundary Layer and Mechanics of Sediment Transport. (D.Sc. thesis). IBW PAN, Gdańsk, 209 pp.
  • [14] Kaczmarek, L. M., Ostrowski, R., 1995. Modelling of bed shear stress under irregular waves. Arch. Hydro-Eng. Environ. Mech. 42 (1-2), 29-51.
  • [15] Kaczmarek, L. M., Ostrowski, R., 1996. Bedload under asymmetric and irregular waves: theory versus laboratory data. Arch. Hydro- Eng. Environ. Mech. 43 (1-4), 21-42.
  • [16] Kaczmarek, L. M., Ostrowski, R., 2002. Modelling intensive near-bed sand transport under wave-current flow versus laboratory and field data. Coast. Eng. 45 (1), 1-18, http://dx.doi.org/10.1016/S0378-3839(01)00041-2.
  • [17] Kim, S. Y., Cornuelle, B. D., Terrill, E. J., 2010. Decomposing observations of high-frequency radar derived surface currents by their forcing mechanisms: locally wind-driven surface currents. J. Geophys. Res. 115 (C12), http://dx.doi.org/10.1029/2010JC006223.
  • [18] Krauss, W., 2001. Chapter: Baltic sea circulation. In: Steele, J., Thorpe, S., Turekian, K.(Eds.), Encyclopedia of Ocean Sciences. Acad. Press, 236-244, http://dx.doi.org/10.1006/rwos.2001.0381.
  • [19] Nielsen, P., 2009. Coastal and Estuarine Processes. Advanced Series on Ocean Engineering, vol. 29. World Sci. Publ. Co. Pte. Ltd., 343 pp.
  • [20] Ostrowski, R., 2003. A quasi phase-resolving model of net sand transport and short-term cross-shore profile evolution. Oceanologia 45 (2), 261-282.
  • [21] Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2015. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland. J. Mar. Syst. 162, 89-97, http://dx.doi.org/10.1016/j.jmarsys.2015.10.006.
  • [22] Ostrowski, R., Stella, M., 2016. Sediment transport beyond the surf zone under waves and currents of the non-tidal sea: Lubiatowo (Poland) case study. Arch. Hydro-Eng. Environ. Mech. 63 (1), 63-77.
  • [23] Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50 (1), 43-58.
  • [24] Rudowski, S., Łęczyński, L., Gajewski, Ł., 2008. Sand waves on the bottom of the deep nearshore and their role in shore formation. Landf. Anal. 9, 214-216, (in Polish).
  • [25] Sokolov, A., Chubarenko, B., 2012. Wind influence on the formation of nearshore currents in the southern Baltic: numerical modelling results. Arch. Hydro-Eng. Environ. Mech. 59 (1-2), 37-48.
  • [26] Trzeciak, S., 2000. Marine Meteorology with Oceanography. PWN, 249 pp., (in Polish).
  • [27] Uścinowicz, S., Jegliński, W., Miotk-Szpiganowicz, G., Nowak, J., Pączek, U., Przezdziecki, P., Szefler, K., Poręba, G., 2014. Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed. Oceanologia 56 (4), 857-880, http://dx.doi.org/10.5697/oc.56-4.857.
  • [28] Valle-Levinson, A., 2016. Lecture 13. Equations of Motion, web location: http://www.essie.ufl.edu/~arnoldo/ocp6050/notes_pdf/ (31.05.16).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d9ee447-8163-4c97-8ba5-95726c3084d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.