PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rapid heating induced vibration of circular cylindrical shells with magnetostrictive functionally graded material

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The vibration and transient response of rapid heating on inner surface of the functionally graded material (FGM) circular cylindrical shells with outer magnetostrictive layer is investigated and computed by using the generalized differential quadrature (GDQ) method. The effects of heat flux value, power law index value, environmental temperature value and control gain value on Terfenol-D FGM circular cylindrical shell subjected to two edges clamped condition due to the not very high temperature fluid rapidly flow into the circular cylindrical shells from one side to the end of axial length direction are analyzed. The higher amplitudes of displacement and thermal stress can be obtained under the higher rapid heat flux value. With suitable product of coil constant and control gain value can reduce the amplitudes of displacement and thermal stress into a smaller value. The displacement of Terfenol-D FGM circular cylindrical shell versus the Terfenol-D thickness is stable for all power law index values. The Terfenol-D FGM circular cylindrical shell can stand against the higher temperature of environment with some values of power law index under rapid heating.
Słowa kluczowe
Rocznik
Strony
710--720
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan, ROC
Bibliografia
  • [1] St. Kugler, P.A. Fotiu, J. Murin, The numerical analysis of FGM shells with enhanced finite elements, Engineering Structures 49 (2013) 920–935.
  • [2] H.R. Mollarazi, M. Foroutan, R. Moradi-Dastjerdi, Analysis of free vibration of functionally graded material (FGM) cylinders by a meshless method, Journal of Composite Materials 46 (2012) 507–515.
  • [3] I.A. Guz, Y.A. Zhuk, C.M. Sands, Analysis of the vibrationally induced dissipative heating of thin-wall structures containing piezoactive layers, International Journal of Non- Linear Mechanics 47 (2012) 105–116.
  • [4] A. Alibeigloo, A.M. Kani, M.H. Pashaei, Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers, International Journal of Pressure Vessels and Piping 89 (2012) 98–111.
  • [5] C.S. Chen, C.Y. Lin, R.D. Chien, Thermally induced buckling of functionally graded hybrid composite plates, International Journal of Mechanical Sciences 53 (2011) 51–58.
  • [6] Y. Ootao, M. Ishihara, K. Noda, Transient thermal stress analysis of a functionally graded magneto-electro- thermoelastic strip due to nonuniform surface heating, Theoretical and Applied Fracture Mechanics 55 (2011) 206– 212.
  • [7] O. Civalek, Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC), Structural Engineering and Mechanics 25 (2007) 127–130.
  • [8] O. Civalek, A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution, Thin-Walled Structures 45 (2007) 692–698.
  • [9] O. Civalek, Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel and Composite Structures 6 (2006) 353–366.
  • [10] R.K. Bhangale, N. Ganesan, C. Padmanabhan, Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells, Journal of Sound and Vibration 292 (2006) 341–371.
  • [11] E. Manoach, P. Ribeiro, Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams, International Journal of Mechanical Sciences 46 (2004) 1589–1606.
  • [12] H. Cho, G.A. Kardomateas, Thermal shock stresses due to heat convection at a bounding surface in a thick orthotropic cylindrical shell, International Journal of Solids and Structures 38 (2001) 2769–2788.
  • [13] S. Wojciechowski, New trends in the development of mechanical engineering materials, Journal of Materials Processing Technology 106 (2000) 230–235.
  • [14] J.S. Chang, J.W. Shyong, Thermally induced vibration of laminated circular cylindrical shell panels, Composites Science and Technology 51 (1994) 419–427.
  • [15] N.N. Huang, T.R. Tauchert, Large-amplitude vibration of graphite-reinforced aluminum cylindrical panels subjected to rapid heating, Computer Engineering 3 (1993) 557–566.
  • [16] G.D. Manolis, D.E. Beskos, Thermally induced vibrations of beam structures, Computer Methods in Applied Mechanics and Engineering 21 (1980) 337–355.
  • [17] K. Shirakawa, Dynamic response of an orthotropic cylindrical shell to rapid heating, Journal of Sound and Vibration 83 (1982) 27–35.
  • [18] C.C. Hong, Transient response of magnetostrictive functionally graded material square plates under rapid heating, Journal of Mechanics 29 (2013) 135–142.
  • [19] C.C. Hong, Rapid heating induced vibration of magnetostrictive functionally graded material plates, Transactions of the ASME, Journal of Vibration and Acoustics 134 (2012), 021019-1– 021019-11.
  • [20] C.C. Hong, Transient responses of magnetostrictive plates by using the GDQ method, European Journal of Mechanics – A: Solids 29 (2010) 1015–1021.
  • [21] C.C. Hong, Computational approach of piezoelectric shells by the GDQ method, Composite Structures 92 (2010) 811–816.
  • [22] C.C. Hong, Rapid heating induced vibration of a laminated shell with the GDQ method, The Open Mechanics Journal 3 (2009) 1–5.
  • [23] S.H. Chi, Y.L. Chung, Mechanical behavior of functionally graded material plates under transverse load. Part I: Analysis, International Journal of Solids and Structures 43 (2006) 3657–3674.
  • [24] S.J. Lee, J.N. Reddy, F. Rostam-Abadi, Nonlinear finite element analysis of laminated composite shells with actuating layers, Finite Elements in Analysis and Design 43 (2006) 1–21.
  • [25] S.J. Lee, J.N. Reddy, F. Rostam-Abadi, Transient analysis of laminated composite plates with embedded smart-material layers, Finite Elements in Analysis and Design 40 (2004) 463–483.
  • [26] H.S. Shen, Nonlinear thermal bending response of FGM plates due to heat condition, Composites Part B: Engineering 38 (2007) 201–215.
  • [27] C. Shu, H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates, International Journal of Solids and Structures 34 (1997) 819–835.
  • [28] L. Hua, K.Y. Lam, Frequency characteristic of a thin rotating cylindrical shell using the generalized differential quadraturemethod, International Journal of Mechanical Sciences 40 (1998) 443–459.
  • [29] R.B. Hetnarski, Thermal Stresses II, Elsevier Science Publishers B.V, 1987 pp. 332–336.
  • [30] O. Civalek, Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engineering Structures 26 (2004) 171–186.
  • [31] R. Kadoli, K. Akhtar, N. Ganesan, Static analysis of functionally graded beams using higher order shear deformation theory, Applied Mathematical Modelling 32 (2008) 2509–2525.
  • [32] H.A. Sepiani, A. Rastgoo, F. Ebrahimi, A. Ghorbanpour Arani, Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials and Design 31 (2010) 1063–1069.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d982b9e-ae31-44ed-bd50-37fcd10e82ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.