Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
W strap is a crucial surface support component for underground coal mine roadways. In this study, the failure characteristics of the W strap in the field are discussed, and the loading characteristics of the strap and the faceplate are numerically and experimentally analysed. Afterwards, a loading apparatus capable of reappearing the loading environment of the strap in the field is fabricated. This loading device, combined support systems consisting of a bolt, faceplate and strap is tested under different simulated strata conditions. Failure patterns of the strap are evaluated by the 3D scanning method, and proper selection of a faceplate is explored. Results indicate that a domed faceplate can achieve a favourable supporting effect on strata, and thus it is favoured compared with a square domed faceplate. In addition, rock cavity and rock integrity beneath the strap are essential factors determining the servicing life of the overall supporting system.
Wydawca
Czasopismo
Rocznik
Tom
Strony
289--302
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wykr.
Twórcy
autor
- China University of Mining and Technology, China
autor
- Shaoxing University, Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, China
autor
- Xi’an University of Architecture and Technology, Politecnico di Milano, China
autor
- Shaoxing University, Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, China
Bibliografia
- [1] J.M. Galvin, Ground Engineering - Principles and Practices for Underground Coal Mining. Springer International Publishing (2016).
- [2] S. Nakamoto, N. Iwasa, J. Takemura, Effects of nails and facing plates on seismic slope response and failure. Géotechnique Letters 7 (2), 136-145 (2017). DOI: https://doi.org/10.1680/jgele.16.00179.
- [3] C.C. Li, Principles of rockbolting design, Journal of Rock Mechanics and Geotechnical Engineering 9 (3), 396-414 (2017). DOI: https://doi.org/10.1016/j.jrmge.2017.04.002.
- [4] X. Feng, N. Zhang, F. Xue, Z. Xie, Practices, experience, and lessons learned based on field observations of support failures in some Chinese coal mines. International Journal of Rock Mechanics and Mining Sciences 123, 104097 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2019.104097.
- [5] B.P. Simser, Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering 11 (5), 1036-1043 (2019). DOI: https://doi.org/10.1016/j.jrmge.2019.07.005.
- [6] C. Wei, C. Zhang, I. Canbulat, A. Cao, L. Dou, Evaluation of current coal burst control techniques and develop ment of a coal burst management framework. Tunnelling and Underground Space Technology 81, 129-143 (2018). DOI: https://doi.org/10.1016/j.tust.2018.07.008.
- [7] Z. Shan, I. Porter, J. Nemcik, E. Baafi, Beam enhancement capacity of a thin fibre-reinforced polymer liner. Géotechnique Letters 10 (4), 478-485 (2020). DOI: https://doi.org/10.1680/jgele.19.00112.
- [8] Q. Qiao, J. Nemcik, I. Porter, E. Baafi, Laboratory investigation of support mechanism of thin spray-on liner for pillar reinforcement. Géotechnique Letters 4 (4), 317-321 (2014). DOI: https://doi.org/10.1680/geolett.14.00076.
- [9] H. Yilmaz, Development of testing methods for comparative assessment of thin spray-on liner (TSL) shear and tensile properties, University of the Witwatersrand, South Africa (2011).
- [10] A. Spearing, J. Ohler, E. Attiogbe, The effective testing of thin spray-on liners (superskins) for use in underground mines. In: Surface support in mining. Y. Potvin, T. Stacey, J. Hadjigeorgiou, editors. Nedlands: Australian centre for Geomechanics, pp. 97-102 (2004).
- [11] E. Villaescusa, Weld mesh for static rock support in Australia. In: Surface support in mining. Y. Potvin, T. Stacey, J. Hadjigeorgiou, editors. Nedlands: Australian Centre for Geomechanics 385-390 (2004).
- [12] J. Nemcik, I. Porter, E. Baafi, C. Lukey, Geotechnical assessment of skin reinforcement in underground mines. In: Proceedings of 28th international conference on ground control in mining Morgantown 256-260 (2009).
- [13] Z. Shan, I. Porter, J. Nemcik, E. Baafi, Investigating the behaviour of fibre reinforced polymers and steel mesh when supporting coal mine roof strata subject to buckling. Rock Mechanics and Rock Engineering 52 (6), 1857-1869 (2019). DOI: https://doi.org/10.1007/s00603-018-1656-1.
- [14] Z. Shan, P. Ian, N. Jan, B. Ernest, S.O. Civil, Comparing the reinforcement capacity of welded steel mesh and a thin spray-on liner using large scale laboratory tests. International Journal of Mining Science and Technology 24 (3), 373-377 (2014). DOI: https://doi.org/10.1016/j.ijmst.2014.03.015.
- [15] R. Frith, G. Reed, M. McKinnon, Fundamental principles of an effective reinforcing roof bolting strategy in horizontally layered roof strata and areas of potential improvement. International Journal of Mining Science and Technology 28 (1), 67-77 (2018). DOI: https://doi.org/10.1016/j.ijmst.2017.11.011.
- [16] Y. Zhang, Y. Jiang, C. Wang, M. Chen, Q. Yin, Shear of bolted non-persistent joints: role of bolting conditions and joint persistency. Géotechnique Letters 10 (4), 550-558 (2020). DOI: https://doi.org/10.1680/jgele.20.00030.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d7e9a9f-ee69-4090-b9d2-7d137c2c507c