PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Long-Term (1964-2014) Variability of Aerosol Optical Thickness and its Impact on Solar Irradiance Based on the Data Taken at Belsk, Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurements of the Linke turbidity factor (LTF) were performed at Belsk (20.78°E, 51.83°N), Poland, since 1964. This data is used to retrieve broadband aerosol optical thickness normalized to the air mass equal to 2 (BAOT2). A linear analysis of the BAOT2 changes reveals an upward trend of 0.023±0.017(2σ) in the 1964-1975 period, a downward trend of –0.051±0.017(2σ) in the 1976-1991 period, and afterwards a statistically insignificant trend of –0.009 ± 0.014(2σ). Such pattern may be related to the economic changes in Poland (changing emissions and environmental policies). The elevated BAOT2 values, excluded from the trend, are found in 1984 and 1992 due to the volcanic eruptions of El Chichon and Mt. Pinatubo, respectively. Past AOT values at 340 and 500 nm are reconstructed using a linear relationship found between AOT and BAOT2. The reconstructed data is used by the radiative transfer models to estimate a response of the total solar and erythemal radiation to the changes in the atmospheric aerosols at Belsk.
Czasopismo
Rocznik
Strony
1858--1874
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • Bird, R.E., and C. Riordan (1986), Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres, J. Clim. Appl. Meteorol. 25, 1, 87-97, DOI: 10.1175/1520- 0450(1986)0252.0.CO;2.
  • Blumthaler, M., and W. Ambach (1988), Solar UVB-albedo of various surfaces, Photochem. Photobiol. 48, 1, 85-88, DOI: 10.1111/j.1751-1097.1988. tb02790.x.
  • Box, M.A., and A. Deepak (1978), Single and multiple scattering contributions to circumsolar radiation, Appl. Opt. 17, 23, 3794-3797, DOI: 10.1364/AO.17. 003794.
  • Chubachi, S. (1984), Preliminary result of ozone observations at Syowa station from February 1982 to January 1983, Mem. Nat. Inst. Polar Res. 34, 13-20.
  • Degünther, M., R. Meerkötter, A. Albold, and G. Seckmeyer (1998), Case study on the influence of inhomogeneous surface albedo on UV irradiance, Geophys. Res. Lett. 25, 19, 3587-3590, DOI: 10.1029/98GL52785.
  • Farman, J.C., B.G. Gardiner, and J.D. Shanklin (1985), Large losses of total ozone in Antarctica reveal seasonal ClO X/NO X interaction, Nature 315, 6016, 207-210, DOI: 10.1038/315207a0.
  • Grenier, J.C., A. De La Casinière, and T. Cabot (1994), A spectral model of Linke's turbidity factor and its experimental implications, Sol. Energy 52, 4, 303- 313, DOI: 10.1016/0038-092X(94)90137-6.
  • Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1-16, DOI: 10.1016/S0034-4257(98)00031-5.
  • IGY (1958), Instruction Manual. Part VI, Radiation Instruments and Measurements, International Geophysical Year, Pergamon, London.
  • IPCC (2013), Summary for policymakers. In: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  • Jarosławski, J., and J.W. Krzyścin (2005), Importance of the aerosol variations for the surface UV-B level: Analysis of the ground-based data taken at Belsk, Poland, 1992-2004, J. Geophys. Res. 110, D16, D16201, DOI: 10.1029/ 2005/JD005951.
  • Jarosławski, J., J.W. Krzyścin, S. Puchalski, and P. Sobolewski (2003), On the optical thickness in the UV range: Analysis of the ground-based data taken at Belsk, Poland, J. Geophys. Res. 108, D23, 4722, DOI: 10.1029/ 2003JD003571.
  • Junker, C., and C. Liousse (2008), A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997, Atmos. Chem. Phys. 8, 5, 1195-1207.
  • Kannel, M., H. Ohvril, and O. Okulov (2012), A shortcut from broadband to spectral aerosol optical depth, Proc. Estonian Acad. Sci. 61, 4, 266-278, DOI: 10.3176/proc.2012.4.02.
  • Kaufman, Y.J., N. Gobron, B. Pinty, J.L Widlowski, and M.M. Verstraete (2002), Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm – theory, Geophys. Res. Lett. 29, 23, 2116, DOI: 10.1029/2001GL014492.
  • King, M.D., Y.J. Kaufman, D. Tanré, and T. Nakajima (1999), Remote sensing of tropospheric aerosols from space: past, present, and future, Bull. Am. Meteorol. Soc. 80, 11, 2229-2259, DOI: 10.1175/1520-0477(1999)0802.0.CO;2.
  • Krzyścin, J.W., B. Rajewska-Wiech, and J. Jarosławski (2013), The long-term variability of atmospheric ozone from the 50-yr observations carried out at Belsk (51.84 degrees N, 20.78 degrees E), Poland, Tellus B 65, 21779, DOI: 10.3402/tellusb.v65i0. 21779.
  • Linke, F. (1922), Transmissions-Koeffizient und Trubungsfaktor, Beitr. Phys. Fr. Atmos. 10, 91-103 (in German).
  • Markowicz, K.M., and J. Uscka-Kowalkowska (2015), Long-term and seasonal variability of the aerosol optical depth at Mount Kasprowy Wierch (Poland), J. Geophys. Res. Atmos. 120, 5, 1865-1879, DOI: 10.1002/ 2014JD022580.
  • Michalowska-Smak, A. (1981), Seasonal and secular changes of atmospheric turbidity in Warsaw and Belsk in the interval 1957-1980, Publs. Inst. Geophys, Pol. Acad. Sci. D-13, 149.
  • Mishchenko, M.I., B. Cairns, G. Kopp, C.F. Schueler, B.A. Fafaul, J.E. Hansen, R.J. Hooker, T. Itchkawich, H.B. Maring, and L.D. Travis (2007), Accurate monitoring of terrestrial aerosol and total solar irradiance: introducing the glory mission, Bull. Am. Meteorol. Soc. 88, 5, 677-692, DOI: 10.1175/ BAMS-88-5-677.
  • Ohvril, H., H. Teral, L. Neiman, M. Kannel, M. Uustare, M. Tee, V. Russak, O. Okulov, A. Joeveer, A. Kallis, T. Ohvril, E.I. Terez, G.A. Terez, G.K. Gushchin, G.M. Abakumova, E.V. Gorbarenko, A.V. Tsvetkov, and N. Laulainen (2009), Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007, J. Geophys. Res. 114, D10, D00D12, DOI: 10.1029/2008JD010644.
  • Ohvril, H., O. Okulov, H. Teral, and K. Teral (1999), The atmospheric integral transparency coefficient and the Forbes effect, Sol. Energy 66, 4, 305-317, DOI: 10.1016/S0038-092X(99)00031-6.
  • Pietruczuk, A. (2013), Short term variability of aerosol optical thickness at Belsk for the period 2002-2010, Atmos. Environ. 79, 744-750, DOI: 10.1016/ j.atmosenv.2013.07.054.
  • Pietruczuk, A., and A. Chaikovsky (2012), Variability of aerosol properties during the 2007-2010 spring seasons over Central Europe, Acta Geophys. 60, 5, 1338-1358, DOI: 10.2478/s11600-012-0017-9.
  • Ruckstuhl, C., R. Philipona, K. Behrens, M.C. Coen, B. Dürr, A. Heimo, C. Mätzler, S. Nyeki, A. Ohmura, L. Vuilleumier, M. Weller, C. Wehrli, and A. Zelenka (2008), Aerosol and cloud effects on solar brightening and the recent rapid warming, Geophys. Res. Lett. 35, 12, L12708, DOI: 10.1029/ 2008GL034228.
  • Stanhill, G., and S. Cohen (2001), Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences, Agr. Forest Meteorol. 107, 4, 255-278, DOI: 10.1016/S0168-1923(00)00241-0.
  • Stern, D.I. (2005), Global sulfur emissions from 1850 to 2000, Chemosphere 58, 2, 163-175, DOI: 10.1016/j.chemosphere.2004.08.022.
  • Streets, D.G., F. Yan, M. Chin, T. Diehl, N. Mahowald, M. Schultz, M. Wild, Y. Wu, and C. Yu (2009), Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006, J. Geophys. Res. 114, D10, D00D18, DOI: 10.1029/2008JD011624.
  • Uscka-Kowalkowska, J. (2013), An analysis of the extinction of direct solar radiation on Mt. Kasprowy Wierch, Poland, Atmos. Res. 134, 1, 175-185, DOI: 10.1016/j.atmosres.2013.08.002.
  • Weller, M., and U. Leiterer (1988), Experimental data on spectral aerosol optical thickness and its global distribution, Beitraege zur Physik der Atmosphaere 61, 2, 1-9.
  • Wild, M. (2008), Global dimming and brightening: A review, J. Geophys. Res. 114, D10, DOI: 10.1029/2008JD011470.
  • WMO (2011), Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Report No. 52, World Meteorological Organization, Geneva, Switzerland.
  • Zhao, T.X.-P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan (2008), Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument, J. Geophys. Res. 113, D7, D07201, DOI: 10.1029/2007JD009061.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d7e3398-4860-40aa-b4af-f52ed0aa5219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.