PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Zr Purity and Oxygen Content on the Structure and Mechanical Properties of Melt-Spun and Suction-Cast Cu46Zr42Al7Y5 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of oxygen content in zirconium on the structure and mechanical properties of the Cu46Zr42Al7Y5 alloy, in the form of melt-spun ribbons and suction-cast rods, was investigated. Two types of Zr, rod and crystal bar of different nominal purities and oxygen contents, were used to synthesize the alloy by arc melting. Rapidly solidified ribbons were produced by melt spinning and their amorphous structures were confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). Bulk samples in the form of rods were cast using a special water-cooled suction casting unit attached to the arc melting system. XRD and DSC studies proved the amorphous structure of the bulk alloy synthesized from low-oxygen Zr and partial crystallization of the same alloy for high-oxygen Zr. In both bulk samples, uniformly distributed crystalline particles were identified as yttrium oxides. Higher mean compressive strength of amorphous alloy was observed. The hardness of amorphous phase was close to 500 HV1 in both bulk alloys, while the hardness of crystalline dendritic areas, observed in the alloy synthesized from high oxygen Zr, was lower by about 50 HV1.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, 30 Mickiewicza Al., 30-059 Krakow, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Mickiewicza Al., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, 30 Mickiewicza Al., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Mickiewicza Al., 30-059 Krakow, Poland
Bibliografia
  • [1] A. Inoue, A. Takeuchi, Acta Mater. 59, 2243 (2011).
  • [2] J. Latuch, P. Krzesniak, T. Kulik, J. Alloy Compd. 483, 47 (2009).
  • [3] A. Inoue, X. Wang, W. Zhang, Rev. Adv. Mater. Sci. 18, 1 (2008).
  • [4] C. L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, Scripta Mater. 54, 1403 (2006).
  • [5] B. W. Zhou, X. G. Zhang, W. Zhang, H. Kimura, T. Zhang, A. Makino, A. Inoue, Mater. Trans. JIM 51, 826 (2010).
  • [6] M. W. Chen, A. Inoue, T. Sakurai, D. H. Ping, K. Hono, Appl. Phys. Lett. 74, 812 (1999).
  • [7] T. B. Massalski, H. Okamoto, P. R. Subramaniam, L. Kacprzak, ASM Int. 3, 1990.
  • [8] A. Gebert, J. Eckert, L. Schultz, Acta Mater. 46, 5475 (1998).
  • [9] D. V. Louzguine-Luzgin, C. Suryanarayana, T. Saito, Q. S. Zhang, N. Chen, J. Saida, A. Inoue, Intermetallics 18, 1531 (2010).
  • [10] C. T. Liu, M. F. Chisholm, M. K. Miller, Intermetallics 10, 1105 (2002).
  • [11] M. L. Vaillant, T. Gloriant, I. Thibon, A. Guillou, V. Keryvin, T. Rouxel, D. Ansel, Scripta Mater. 49, 1139 (2003).
  • [12] X. H. Lin, W. L. Johnson, W. K. Rhim, Mater. Trans. JIM 38, 473 (1997).
  • [13] W. H. Wang, Prog. Mater. Sci. 52, 540 (2007).
  • [14] L. Deng, B. Zhou, H. Yang, X. Jiang, B. Jiang, X. Zhang, J. Alloy Compd. 632, 429 (2015).
  • [15] A. A. Kündig, D. Lepori, A. J. Perry, S. Rossmann, A. Blatter, A. Dommann, P. J. Uggowitzer, Mater. Trans. JIM 43, 3206 (2002).
  • [16] J. Luo, H. Duan, C. Ma, S. Pang, T. Zhang, Mater. Trans. JIM 47, 450 (2006).
  • [17] Y. X. Wang, H. Yang, G. Lim, Y. Li, Scripta Mater. 62, 682 (2010).
  • [18] J. L. Cheng, G. Chen, Z. W. Zhang, Z. Z. Wang, Z. Y. Wang, X. Q. Li, Intermetallics 49, 149 (2014).
  • [19] J. L. Cheng, G. Chen, C. T. Liu, Y. Li, Scientific Reports 3, 2097 (2013).
  • [20] J. Cheng, G. Chen, Mater. Lett. 118, 169 (2014).
  • [21] K. Ziewiec, Z. Kędzierski, A. Zielińska-Lipiec, J. Stępiński, S. Kąc, J. Alloy Compd. 482, 114 (2009).
  • [22] K. Górecki, P. Bała, G. Cios, T. Kozieł, M. Stępień, K. Wieczerzak, Metal. Mater. Trans. A 47A, 3257 (2016).
  • [23] K. Wieczerzak, P. Bała, M. Stępień, G. Cios, T. Kozieł, Mater. Des. 94, 61 (2016).
  • [24] K. T. Park, T. H. Lee, N. C. Jo, H. H. Nersisyan, B. S. Chun, H. H. Lee, J. H. Lee, J. Nucl. Mater. 436, 130 (2013).
  • [25] A. Inoue, S. Tsutomu, Z. Tao, Mater. Trans. JIM 36.1420 (1995).
  • [26] T. Koziel, Arch. Metall. Mater. 60, 767 (2015).
  • [27] M. Kenisarin, V. Y. Checkhovskoy, Rev. Int. Hautes Temp. 12,329 (1975).
  • [28] D. Xu, G. Duan, W. L. Johnson, Phys. Rev. Lett. 92,24501 (2004).
  • [29] H. W. Xu, Y. L. Du, Y. Deng,T. Nonferr. Metal. Soc. 22, 842 (2012).
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d7bc2ba-a91a-4b3e-a99a-e3768c9a3ffe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.