PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New environmentally friendly low-pressure refrigerants mini-channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, in addition to the thermodynamic properties of refrigerants, their impact on the environment is of high significance. Hence, it is important to use refrigerants with the lowest possible values of ozone depletion potential and global warming potential indices in refrigeration, organic Rankine cycle (ORC), air conditioning, and heat pump systems. Natural refrigerants are the most environmentally friendly; unfortunately, they have less favourable thermodynamic properties. Currently, low-pressure refrigerants from the FC (fluorocarbons, fluorine liquids) and HFE (hydrofluoroether) groups are increasingly used. This paper presents the most important properties and applications of selected refrigerants from these groups and also reviews the literature on their use.
Rocznik
Strony
89--104
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
  • Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
Bibliografia
  • [1] 3M: 3M Thermal Management Fluids. https://multimedia.3m.com/mws/media/569860O/3mtm-thermal-management-fluids-for-military-aerospace-apps.pdf (acessed 4 Sep. 2018).
  • [2] Muńoz-Rujas N., Aguilar F., García-Alonso J.M., Montero E.A.: Thermodynamics of binary mixtures 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (HFE-7200) +2-propanol: High pressure density, speed of sound and derivative properties. J. Chem.Thermodyn. 131(2019), 630–647. doi: 10.1016/j.jct.2018.12.018
  • [3] Zheng Y., Gao H., Chen Q., Meng X., Wu J.: Isobaric heat capacity measurements of liquid HFE-7200 and HFE-7500 from 245 to 353K at pressures up to 15MPa. Fluid Phase Equilibr. 372(2014), 56–62. doi: 10.1016/j.fluid.2014.03.017
  • [4] Pastuszko R., Kaniowski R., Wójcik T.M.: Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer. Appl. Therm. Eng.166(2020), 114658. doi: 10.1016/j.applthermaleng.2019.114658
  • [5] Rausch M.H., Kretschmer L., Will S., Leipertz A., Fröba A.P.: Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE7200, HFE-7300, and HFE-7500. J. Chem. Eng. Data. 60(2015), 3759–3765. doi:10.1021/acs.jced.5b00691
  • [6] 3M: 3M Novec 7100 Engineered Fluid. https://multimedia.3m.com/mws/media/199818O/3m-novec-7100-engineered-fluid.pdf (acessed 9 Sep. 2009).
  • [7] 3M: 3M Fluorinert Electronic Liquid FC-72. https://multimedia.3m.com/mws/media/64892O/3m-fluorinert-electronic-liquid-fc72-en.pdf (acessed 09 Sep. 2009).
  • [8] 3M: 3M Novec 649 Engineered Fluid. https://multimedia.3m.com/mws/media/569865O/3m-novec-engineered-fluid-649.pdf (acessed 9 Sep. 2009).
  • [9] 3M: 3M Novec 7200 Engineered Fluid. https://multimedia.3m.com/mws/media/199819O/3m-novec-7200-engineered-fluid-en.pdf (acessed 9 Sep. 2009).
  • [10] 3M: 3M Novec 7500 Engineered Fluid. https://multimedia.3m.com/mws/media/65496O/3m-novec-7500-engineered-fluid.pdf (acessed 9 Sep. 2008).
  • [11] 3M: 3M Novec 7000 Engineered Fluid. https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (acessed 9 Sep. 2021).
  • [12] Forrest E., Hu L.-W., Buongiorno J., MCKrell T.: Pool boiling performance of NovecTM 649 engineered fluid. In: Proc. ECI Int. Conf. on Boiling Heat Transfer. Florianópolis-SC-Brazil, 2009, 1–7.
  • [13] Bonk C.D., Laux C., Rödder M., Neef M.: Design of a 1 kW organic Rankine cycle for teaching and research issues. Energy Proced. 129(2017), 931–938. doi:10.1016/j.egypro.2017.09.117
  • [14] Bruder M., Sembach L., Krumova V., Sattelmayer T.: Local data of heat flux, wall temperature and the void phase along the boiling curve during vertical subcooled flow boiling of refrigerant Novec 649 at a copper wall. Data Br. 21(2018), 1415–1429. doi:10.1016/j.dib.2018.10.138
  • [15] Bruder M., Sembach L., Lampl D., Hirsch C., Sattelmayer T.: Local measurements non vertical subcooled flow boiling of refrigerant Novec 649. Int. J. Multiphas. Flow 119(2019), 108–122. doi: 10.1016/j.ijmultiphaseflow.2019.07.012
  • [16] Fu B.-R., Lin W.-J.: Supercritical heat transfer of NOVEC 649 refrigerant in horizontal minichannels. Int. Commun. Heat Mass Transf. 117(2020), 104740. doi: 10.1016/j.icheatmasstransfer.2020.104740
  • [17] Wu Z., Cao Z., Sundén B.: Saturated pool boiling heat transfer of acetone and HFE7200 on modified surfaces by electrophoretic and electrochemical deposition. Appl. Energ. 249(2019), 286–299. doi: 10.1016/j.apenergy.2019.04.160
  • [18] Cao Z., Wu Z., Sundén B.: Pool boiling of NOVEC-649 on microparticle-coated and nanoparticle-coated surfaces. Heat Transf. Eng. 42(2021), 19–20, 1732–1747. doi:10.1080/01457632.2020.1818419
  • [19] Cao Z., Wu Z., Sundén B.: Heat transfer prediction and critical heat flux mechanism for pool boiling of NOVEC-649 on microporous copper surfaces. Int. J. Heat Mass Transf. 141(2019), 818–834. doi: 10.1016/j.ijheatmasstransfer.2019.07.036
  • [20] Adebayo V., Abid M., Adedeji M., Dagbasi M., Bamisile O.: Comparative thermodynamic performance analysis of a cascade refrigeration system with new refrigerants paired with CO2. Appl. Therm. Eng. 184(2021), 116286. doi: 10.1016/j.applthermaleng.2020.116286
  • [21] Mikielewicz D., Andrzejczyk R., Mikielewicz J.: Pressure drop of HFE7000 and HFE7100 in flow condensation in minichannels with account of non-adiabatic effects. In: Proc. MATEC Web Conf. 18(2014), 01007. doi: 10.1051/matecconf/20141801007
  • [22] Mikielewicz D., Wajs J., Andrzejczyk R., Klugmann M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int. J. Refrig. 68(2016),226–241. doi: 10.1016/j.ijrefrig.2016.03.005
  • [23] Andrzejczyk R., Muszyński T.: The performance of H2O, R134a, SES36, ethanol, and HFE7100 two-phase closed thermosyphons for varying operating parameters and geometry. Arch. Thermodyn. 38(2017), 3–21. doi: 10.1515/aoter-2017-0013
  • [24] Fronk B.M., Garimella S.: Measurement of heat transfer and pressure drop during condensation of carbon dioxide in microscale geometries. In: Proc. 14th Int. Heat Transfer Conf. 2010, Vol. 2. ASMEDC, 2010, 235–243.
  • [25] Mikielewicz D., Andrzejczyk R., Jakubowska B., Mikielewicz J.: Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels. Arch. Thermodyn. 35(2014), 3, 17–37. doi: 10.2478/aoter-2014-0019
  • [26] Sikora M., Bohdal T.: Heat and flow investigation of NOVEC649 refrigerant condensation in pipe minichannels. Energy 209(2020), 118447. doi: 10.1016/j.energy.2020.118447
  • [27] Sikora M., Bohdal T., Formela K.: Experimental study of HFE 7000 refrigerant condensation in horizontal pipe minichannels. Materials (Basel) 14(2021), 6886. doi:10.3390/ma14226886
  • [28] Bohdal T., Charun H., Sikora M.: Condensation of Novec 649 refrigerant in pipe minichannels. E3S Web Conf. 70(2018), 02002. doi: 10.1051/e3sconf/20187002002
  • [29] Sikora M., Bohdal T.: Application of computer image analyses in the investigation of refrigerants condensation in minichannels. Arch. Thermodyn. 40(2019), 1, 103–114.doi: 10.24425/ather.2019.128292
  • [30] Al-Zaidi A.H., Mahmoud M.M., Karayiannis T.G.: Condensation flow patterns and heat transfer in horizontal microchannels. Exp. Therm. Fluid Sci. 90(2018), 153–173.doi: 10.1016/j.expthermflusci.2017.09.009
  • [31] Sikora M.: Flow structure investigations during novec refrigerant condensation in minichannels. Materials (Basel) 14(2021), 6889. doi: 10.3390/ma14226889
  • [32] Piasecka M., Maciejewska B., Łabędzki P.: Heat transfer coefficient determination during FC-72 flow in a minichannel heat sink using the Trefftz functions and ADINA software. Energies. 13(2020), 6647. doi: 10.3390/en13246647
  • [33] https://www.adina.com/index.shtml (acessed 9 Sep. 2009).
  • [34] Piasecka M., Strąk K., Maciejewska B.: Heat transfer characteristics during flow along horizontal and vertical minichannels. Int. J. Multiph. Flow. 137(2021),103559. doi: 10.1016/j.ijmultiphaseflow.2021.103559
  • [35] Mikielewicz J.: Semi-empirical method of determining the heat-transfer coefficient for subcooled, saturated boiling in a channel. Int. J. Heat Mass Transf. 17(1974),1129–1134. doi: 10.1016/0017-9310(74)90114-8
  • [36] Piasecka M., Strąk K.: Characteristics of refrigerant boiling heat transfer in rectangular mini-channels during various flow orientations. Energies 14(2021), 4891. doi:10.3390/en14164891
  • [37] Strąk K., Piasecka M.: The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling. Int. J. Heat Mass Transf.158(2020), 119933. doi: 10.1016/j.ijheatmasstransfer.2020.119933
  • [38] Eraghubi M., Di Marco P., Robinson A.J.: Low mass flux upward vertical forced flow boiling of HFE7000. Exp. Therm. Fluid Sci. 102(2019), 291–301. doi: 10.1016/j.expthermflusci.2018.11.011
  • [39] Kruzel M., Bohdal T., Dutkowski K.: External condensation of HFE 7000 and HFE 7100 refrigerants in shell and tube heat exchangers. Materials (Basel) 14(2021),6825. doi: 10.3390/ma14226825
  • [40] Kruzel M., Bohdal T., Dutkowski K., Radchenko M.: The effect of microencapsulated PCM slurry coolant on the efficiency of a shell and tube heat exchanger. Energies15(2022), 5142. doi: 10.3390/en15145142
  • [41] Woodcock C., Ng’oma C., Sweet M., Wang Y., Peles Y., Plawsky J.: Ultra-high heat flux dissipation with Piranha Pin Fins. Int. J. Heat Mass Transf. 128(2019),504–515. doi: 10.1016/j.ijheatmasstransfer.2018.09.030
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d78b73d-b3d8-407c-a1c6-1b7b0f82ced6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.