PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Importance measure-based maintenance strategy considering maintenance costs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maintenance is an important way to ensure the best performance of repairable systems. This paper considers how to reduce system maintenance cost while ensuring consistent system performance. Due to budget constraints, preventive maintenance (PM) can be done on only some of the system components. Also, different selections of components to be maintained can have markedly different effects on system performance. On the basis of the above issues, this paper proposes an importance-based maintenance priority (IBMP) model to guide the selection of PM components. Then the model is extended to find the degree of correlation between two components to be maintained and a joint importance-based maintenance priority (JIBMP) model to guide the selection of opportunistic maintenance (OM) components is proposed. Also, optimization strategies under various conditions are proposed. Finally, a case of 2H2E architecture is used to demonstrate the proposed method. The results show that generators in the 2E layout have the highest maintenance priority, which further explains the difference in the importance of each component in PM.
Rocznik
Strony
15--24
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing 100191, China
  • Beihang University, Research Institute for Frontier Science, Beijing 100191, China
  • Beihang University, Ningbo Institute of Technology, Ningbo 315800, China
autor
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing 100191, China
  • Beihang University, Ningbo Institute of Technology, Ningbo 315800, China
autor
  • Zhengzhou University School of Management Engineering, Zhengzhou 450001, China
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing 100191, China
  • Beihang University, Ningbo Institute of Technology, Ningbo 315800, China
  • Old Dominion University, Engineering Technology Department, Norfolk, VA 23529, USA
Bibliografia
  • 1. Andrzejczak K, Mlynczak M, Selech J. Poisson-distributed failures in the predicting of the cost of corrective maintenance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20: 602-609, http://doi.org/10.17531/ein.2018.4.11.
  • 2. Birnbaum ZW. On the importance of different components in a multi-component system. New York: Academic Press 1969: 581-592.
  • 3. Babishin V, Hajipour Y, Taghipour S. Optimisation of Non-Periodic Inspection and Maintenance for Multicomponent Systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20: 327-342, http://doi.org/10.17531/ein.2018.2.20.
  • 4. Cai B, Huang L, Xie M. Bayesian networks in fault diagnosis. IEEE Transactions on Industrial Informatics 2017; 13: 2227–2240, http://doi.org/10.1109/TII.2017.2695583.
  • 5. Cai B, Kong X, Liu Y, et al. Application of Bayesian networks in Reliability Evaluation. IEEE Transactions on Industrial Informatics 2019; 15: 2146-2157, http://doi.org/10.1109/TII.2018.2858281.
  • 6. Cai B, Liu Y, Liu Z, et al. Bayesian Networks for Reliability Engineering. Singapore: Springer 2019: 187-196.
  • 7. Dui H, Li S, Xing L, et al. System performance-based joint importance analysis guided maintenance for repairable systems. Reliability Engineering & System Safety 2019; 186: 162-175, http://doi.org/ 10.1016/j.ress.2019.02.021.
  • 8. Dui H, Si S, Yam R. A cost-based integrated importance measure of system components for preventive maintenance. Reliability Engineering & System Safety 2017; 168: 98-104, https://doi.org/10.1016/j.ress.2017.05.025.
  • 9. Griffith W.S. Multistate Reliability Models. Journal of Applied Probability 1980; 17: 735–744, https://doi.org/10.2307/3212967.
  • 10. Gao H, Cui L, Qiu Q. Reliability modeling for degradation-shock dependence systems with multiple species of shocks. Reliability Engineering & System Safety 2019; 185: 133-143, https://doi.org/ 10.1016/j.ress.2018.12.011.
  • 11. Legát V, Mošna F, Aleš Z, et al. Preventive maintenance models – higher operational reliability. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19: 134-141, http://doi.org/10.17531/ein.2017.1.19.
  • 12. Levitin G, Xing L, Dai Y. Mission Abort Policy for Systems with Observable States of Standby Components. Risk Analysis 2020; 40: 1900-1912, http://doi.org/10.1111/risa.13532.
  • 13. Levitin G, Finkelstein M, Dai Y. State-based mission abort policies for multistate systems. Reliability Engineering & System Safety 2020; 204: 107122, https://doi.org/10.1016/j.ress.2020.107122.
  • 14. Lee M, Li L, Song W. Analysis of direct operating cost of wide-body passenger aircraft: A parametric study based on Hong Kong. Chinese Journal of Aeronautics 2019; 32: 1222-1243, https://doi.org/10.1016/j.cja.2019.03.011.
  • 15. Peng W, Liu Y, Zhang X, et al. Sequential preventive maintenance policies with consideration of random adjustment-reduction features. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17: 306-313, http:// doi.org/10.17531/ein.2015.2.19.
  • 16. Qiu Q, Cui L. Optimal mission abort policy for systems subject to random shocks based on virtual age process. Reliability Engineering & System Safety 2019; 189: 11-20, http:// doi.org/10.1016/j.ress.2019.04.010.
  • 17. Si S, Zhao J, Cai Z, et al. Recent advances in system reliability optimization driven by importance measures. Frontiers of Engineering Management 2020; 7: 335-358, http:// doi.org/10.1007/s42524-020-0112-6.
  • 18. Si S, Dui H, Zhao X, et al. Integrated importance measure of component states based on loss of system performance. IEEE Transactions on Reliability 2012; 61:192–202, http:// doi.org/ 10.1109/TR.2011.2182394.
  • 19. Sun J, Wang F, Ning S. Aircraft air conditioning system health state estimation and prediction for predictive maintenance. Chinese Journal of Aeronautics 2020; 33: 947-955, https://doi.org/10.1016/j.cja.2019.03.039.
  • 20. Tan C, Narula U, Lai L, et al. Optimal maintenance strategy on medical instruments used for haemodialysis process. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21: 318–328, https://doi.org/10.17531/ein.2019.2.17.
  • 21. Wu S, Chan L. Performance utility-analysis of multi-state systems. IEEE Transactions on Reliability 2003; 52: 14-21, https://doi.org/10.1109/TR.2002.805783.
  • 22. Wu S, Coolen F. A cost-based importance measure for system components: An extension of the Birnbaum importance. European Journal of Operational Research 2013; 225: 189-195, https://doi.org/10.1016/j.ejor.2012.09.034.
  • 23. Wu S, Chen Y, Wu Q, et al. Linking component importance to optimisation of preventive maintenance policy. Reliability Engineering & System Safety 2016;146: 26-32, https://dx.doi.org/ 10.1016/j.ress.2015.10.008.
  • 24. Xing L, Zhao G, Wang Y, et al. Reliability modeling of correlated competitions and dependent components with random failure propagation time. Quality and Reliability Engineering International 2020; 36: 947-964, https://doi.org/10.1002/qre.2609.
  • 25. Yuan F. Parameter estimation for bivariate Weibull distribution using generalized moment method for reliability evaluation. Quality and Reliability Engineering International 2018; 34: 631-640, https://doi.org/10.1002/qre.2276.
  • 26. Zhai Q, Yang J, Xie M, et al. Generalized moment-independent importance measures based on Minkowski distance. European Journal of Operational Research 2014; 239: 449–455, https://doi.org/10.1016/j.ejor.2014.05.021.
  • 27. Zhu X, Fu Y, Yuan T, et al. Birnbaum importance based heuristics for multi-type component assignment problems. Reliability Engineering & System Safety 2017; 165: 209–221, https://doi.org/10.1016/j.ress.2017.04.018.
  • 28. Zheng Z, Cui L, Hawkes A. A study on a single-unit Markov repairable system with repair time omission. IEEE Transactions on Reliability 2006; 55: 182–188, https://doi.org/10.1109/TR.2006.874933.
  • 29. Zhang C, Qian Y, Dui H, et al. Opportunistic maintenance strategy of a Heave Compensation System for expected performance degradation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23: 512-521, http://doi.org/10.17531/ein.2021.3.12.
  • 30. Zhao X, Wang S, Wang X, et al. Multi-state balanced systems in a shock environment. Reliability Engineering & System Safety 2020; 193: 106592, http://doi.org/10.1016/j.ress.2019.106592.
  • 31. Zhao X, Huang X, Sun J. Reliability modeling and maintenance optimization for the two-unit system with preset self-repairing mechanism. Proceedings of the Institution of Mechanical Engineers 2020; 234: 221-234, http://doi.org/10.1177/1748006X19890739.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d7289e5-11eb-424f-97c5-c9dd96c7eec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.