Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
High tide causes rip waves that causing disruptions and deaths in beaches of India and rest. In most of the beach drowning deaths are rising due to a lack of early warning information. Currently beach guards need real-time beach monitoring tide warning systems to rescue drowning people. While deep learning technologies excel at predicting objects, they struggle to accurately forecast high and low tides information for beach swimmers. At present the high and low tide detection accuracy is lower, due to that the early warning system are not functioning effectively. To improve the tide detection efficiency the dataset training must achieve higher accuracy. This paper addresses deep learning training issues to improve novel tide dataset training accuracy with novel tide dataset. This study suggests the best deep learning training network for beach tide classification. The work fine-tunes optimizers and epochs to look at the modern deep learning algorithms ResNet-18 and ResNet-50. This study tests deep learning training networks namely, RMSProp, SGDM and ADAM with epochs starting from 30 to 500 and applies three optimizers to balanced tide data. When using SGDM at shorter epochs, ResNet-18 and ResNet-50 achieved 100% training accuracy. The ResNet-50 training network had 100% classification accuracy with all three optimizers in lower and upper epochs. ResNet-50 integrated with SGDM and ADAM optimizers obtained 100% success at reduced epochs compared with ResNet-18. The present study examines only two training classes, i.e., high and low tides, and it can be extended by adding a few more object classes like humans and ferries. This unique approach aids in automating smart beach monitoring devices, enabling them to continuously send out high and low tide alerts using ResNet-50. The dissemination of tide information is crucial for rescue operations to prevent drowning cases and reduce fatalities in Indian and rest beaches.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
13--33
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- School of Computer Science and Engineering, VIT-AP University, Amravathi, India
autor
- School of Computer Science and Engineering, VIT-AP University, Amravathi, India
Bibliografia
- 1. Almar, R., Marchesiello, P., Almeida, L.P., Thuan, D.H., Tanaka, H. & Viet, N.T. (2017). Shoreline response to a sequence of typhoon and monsoon events. Water, 9(6), 364. https://doi.org/10.3390/w9060364
- 2. Ashhar, S.M., Mokri, S.S., Abd Rahni, A.A., Huddin, A.B., Zulkarnain, N., Azmi, N.A. & Mahaletchumy, T. (2021). Comparison of deep learning convolutional neural network (CNN) architectures for CT lung cancer classification. International Journal of Advanced Technology and Engineering Exploration, 8(74), 126. http://dx.doi.org/10.19101/IJATEE.2020.S1762126.
- 3. Dahiya, S., Gulati, T. & Gupta, D. (2022). Performance analysis of deep learning architectures for plant leaves disease detection. Measurement: Sensors, 24, 100581. https://doi.org/10.1016/j.measen.2022.100581
- 4. de Silva, A., Mori, I., Dusek, G., Davis, J. & Pang, A. (2021). Automated rip current detection with region based convolutional neural networks. Coastal Engineering, 166, 103859. https://doi.org/10.1016/j.coastaleng.2021.103859
- 5. George, E., Smith, A., O’Rourke, C., Cherry, N., Sfalcin, A. & Houser, C. (2024). Citizen science monitoring of beach and dune erosion during Hurricane Fiona. Physical Geography,1–20. https://doi.org/10.1080/02723646.2024.2324516
- 6. Girin, T., Lejay, L., Wirth, J., Widiez, T., Palenchar, P.M., Nazoa, P., Touraine, B., Gojon, A. & Lepetit, M. (2007). Identification of a 150 bp cis‐acting element of the AtNRT2. 1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, Cell & Environment, 30(11), 1366–1380. https://doi.org/10.1111/j.1365-3040.2007.01712
- 7. Halliday, G.M., Holton, J.L., Revesz, T. & Dickson, D.W. (2011). Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 122, 187–204. https://doi.org/10.1007/s00401-011-0852-9
- 8. Koon, W., Brander, R.W., Dusek, G., Castelle, B. & Lawes, J.C. (2023). Relationships between the tide and fatal drowning at surf beaches in New South Wales, Australia: Implications for coastal safety management and practice. Ocean & Coastal Management, 238, 106584. https://doi.org/10.1016/j.ocecoaman.2023.106584
- 9. Kumar V., Azamathulla H. M, Sharma K. V, Mehta D. J, & Maharaj K. T. (2023). The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management. Sustainability, 15(13), 10543. https://doi.org/10.3390/su151310543
- 10. Kumar, T., Brennan, R., Mileo, A. & Bendechache, M. (2024). Image data augmentation approaches: A comprehensive survey and future directions. IEEE Access, 12, 187536–187571. https://doi.org/10.1109/ACCESS.2024.3470122
- 11. Lambu, P. & Duvvuru, R. (2024). Training Issues in Classifying Seashore tide Object Detection–A Deep Learning Study. Ecological Engineering & Environmental Technology, 25(10). https://doi.org/10.12912/27197050/191861
- 12. Lange, M., Joly, F., Vardy, J., Ahles, T., Dubois, M., Tron, L., Winocur, G., De Ruiter, M.B. & Castel, H. (2019). Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors. Annals of Oncology, 30(12), 1925–1940. https://doi.org/10.1093/annonc/mdz410
- 13. Li, G., Yang, Y., Qu, X., Cao, D. & Li, K. (2021). A deep learning based image enhancement approach for autonomous driving at night. Knowledge-Based Systems, 213, 106617. https://doi.org/10.1016/j.knosys.2020.106617
- 14. Little, M., Rosa, E., Heasley, C., Asif, A., Dodd, W. & Richter, A. (2022). Promoting healthy food access and nutrition in primary care: a systematic scoping review of food prescription programs. American Journal of Health Promotion, 36(3), 518–536. https://doi.org/10.1177/08901171211056584
- 15. Liu, H., Li, C., Wu, Q. & Lee, Y.J. (2024). Visual instruction tuning. Advances n Neural Information Processing Systems, 36. https://doi.org/10.1016/j.knosys.2020.106617.
- 16. Mazloomzadeh, S., Khaleghparast, S., Ghadrdoost, B., Mousavizadeh, M., Baay, M.R., Noohi, F., Sharifnia, H., Ahmadi, A., Tavan, S., Alamdari, N.M. & Fathi, M. (2021). Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: the INSPIRATION randomized clinical trial. Jama, 325(16), 1620–1630. https://doi.org/10.1001/jama.2021.4152
- 17. Mehta, L., Srivastava, S., Adam, H.N., Alankar, Bose, S., Ghosh, U. & Kumar, V.V. (2019). Climate change and uncertainty from ‘above’ and ‘below’: perspectives from India. Regional Environmental Change, 19, 1533–1547.
- 18. Meliboev, A., Alikhanov, J. & Kim, W. (2022). Performance evaluation of deep learning based network intrusion detection system across multiple balanced and imbalanced datasets. Electronics, 11(4), 515. https://doi.org/10.3390/electronics11040515
- 19. Mohana, A.A., Farhad, S.M., Haque, N. & Pramanik, B.K. (2021). Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere, 284, 131430. https://doi.org/10.1016/j.chemosphere.2021.131430
- 20. Najafzadeh, M., Basirian, S. & Li, Z. (2024). Vulnerability of the rip current phenomenon in marine environments using machine learning models. Results in Engineering, 21, 101704. https://doi.org/10.1016/j.rineng.2023.101704
- 21. Pikelj, K., Ružić, I., Ilić, S., James, M.R. & Kordić, B. (2018). Implementing an efficient beach erosion monitoring system for coastal management in Croatia. Ocean and Coastal Management, 156, 223–238. https://doi.org/10.1016/j.ocecoaman.2017.11.019
- 22. Puleo, J.A., Lanckriet, T., Conley, D. & Foster, D. (2016). Sediment transport partitioning in the swash zone of a large-scale laboratory beach. Coastal Engineering, 113, 73–87. https://doi.org/10.1016/j. coastaleng.2015.11.001
- 23. Ramakrishna, C.R. & Sivaperuman, C. (2010). Biodiversity of Andaman and Nicobar Islands–an overview. Recent trends in biodiversity of Andaman, Nicobar Islands. Zoological Survey of India, Kolkata,1–42.
- 24. Ravimuni, K. & Rani, K.U. (2022). Demographic Profile of Deaths Due to Drowning in and Around Vijayawada, Andhra Pradesh. Indian Journal of Forensic Medicine & Toxicology, 16(1). https://doi.org/0.37506/ijfmt.v16i1.17571
- 25. Ray-Bennett, N.S., Dissanayake, L., Ekezie, W., Macleod, L., Mecrow, T., Saunders, C., Sindall, R., Oporia, F. & Rahman, A. (2024). How drowning data is collected in low-and middle-income countries (LMICs): A scoping review. Injury Prevention, 30, A131-A132 https://doi.org/10.1136/ injuryprev-2024-SAFETY.314
- 26. Shimada, R., Ishikawa, T., Toguchi, H. & Komine, T. (2023). Study on appropriate time interval of image averaging for rip current detection. In: International Conference on Asian and Pacific Coasts. 1135–1144. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7409-2_103
- 27. Ullah, A., Elahi, H., Sun, Z., Khatoon, A. & Ahmad, I. (2022). Comparative analysis of AlexNet, ResNet18 and SqueezeNet with diverse modification and arduous implementation. Arabian Journal for Science and Engineering, 47(2), 2397–2417.
- 28. Vitousek, S., Buscombe, D., Vos, K., Barnard, P.L., Ritchie, A.C. & Warrick, J.A. (2023). The future of coastal monitoring through satellite remote sensing. Cambridge Prisms: Coastal Futures, 1(10). https://doi.org/10.1017/cft.2022.4
- 29. Yadhunath, E.M., Seelam, J.K. & Jishad, M. (2022). Rip current occurrences in meso tidal surf zones at a coastal stretch along the central west coast of India. Regional Studies in Marine Science, 51, 102180. https://doi.org/10.1016/j.rsma.2022.102180
- 30. Yahya, S.N., Ramli, A.F., Nordin, M.N., Basarudin, H. & Abu, M.A. (2021). Comparison of convolutional neural network architectures for face mask detection. International Journal of Advanced Computer Science and Applications, 12(12), 667–677.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d6d2375-7f0c-4e82-bbde-2202dec3df88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.