Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ship maintenance is regulated by both the state and the classification society. The scope of maintenance works depends on the age of the ship and includes a dock, intermediate and special inspection. The problem is to estimate the reliable time of the ship maintenance and the downtime at the shipyard. The purpose of this article is to develop a more accurate model to predict a ship’s overall maintenance time. A multiple linear regression model is developed to describe the impact of historical data on hull repair, painting time, piping, age, structural and hull plate replacement for ship maintenance. In the literature, the least squares method is used to estimate unknown regression coefficients. The original value of the article is the use of a genetic algorithm to estimate coefficient values of the multiple linear regression model. Necessary analysis and simulations are performed on the data collected for oil and chemical or product tankers. As a result, a significant improvement in the adequacy of the presented model was identified.
Czasopismo
Rocznik
Tom
Strony
88--99
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Constanta Maritime University Faculty of Navigation and Naval Transport 104 Mircea cel Batran Street, 900663 Constanta Romania
autor
- Silesian University of Technology Faculty of Mechanical Engineering Konarskiego 18A str., 44-100 Gliwice Poland
autor
- Ovidius University of Constanta, Romania
autor
- Constanta Shipyard-Romania, Greece Branch Office
Bibliografia
- 1. P. Bzura. ‘Diagnostic model of crankshaft seals’. Polish Maritime Research. 2019, Vol. 26, Issue: 3, 39-46.
- 2. A. Krystosik-Gromadzinska, W. Zenczak. ‘Improvements to a fire safety management system’. Polish Maritime Research. 2019, Vol. 26, Issue 4, 117-123.
- 3. Ch. Gong, D. M. Frangpol, M. Cheng. ‘Risk-based life-cycle optimal dry-docking inspection of corroding ship hull tankers’. Engineering Structures. 2019, 195, 559-567.
- 4. J. Girtler. ‘Limiting distribution of the three-state semimarkov model of technical state transitions of ship power plant machines and its applicability in operational decisionmaking’. Polish Maritime Research. 2020, Vol. 27, Issue: 2, 136-144.
- 5. S. Wu, Y. Chen, Q. Wu, Z. Wang. ‘Linking component importance to optimisation of preventive maintenance policy’. Reliability Engineering and System Safety. 2016, 146, 26-32.
- 6. D. Butler. ‘A Guide to Ship Repair Estimates in Man-hours’. 2012, DOI: 10710.1016/B978-0-08-098262-5.00008-18.
- 7. S. Muthia, Naffisah, I. Surjandari, A. Rachman, R.W.H. Palupi, ‘Estimation of Dry Docking Maintenance Duration using Artificial Neural Network’. Int Journal of Computing, Communications & Instrumentation Engg. 2014, Vol. 1, Issue 1, 2349-1477.
- 8. I. Surjandari, R. Novita. ‘Estimation Model of Dry Docking Duration Using Data Mining’. World Academy of Science, Engineering and Technology. 2013, Vol. 7.
- 9. E. Manea, M-G. Manea, ‘The Influence of the Deadweight in the Projection of the Duration of the Maritime Ships Mentenancy Works’, Advanced Engineering Forum 2019, 34, 292-299.
- 10. K. A. Dev, M. Saha. ‘Modelling and Analysis of Ship Repairing Time’. Journal of Ship Production and Design. 2015, Vol. 31, No. 1, 1-8.
- 11. W. Tarełko.’Control model of maintainability level’. Reliability Engineering and System Safety. 1995, 47, 85-91.
- 12. Z. Bouayed, Ch.E. Penney, A. Sokri, T. Yazeck, ‘Estimating Maintenance Costs for Royal Canadian Navy Ships’, Scientific Report DRDC-RDDC-2017-R147.
- 13. J.E.C. Arroyo, V. A. Armentano. ‘Genetic local search for multi-objective flowshop scheduling problems’. European journal of operational research. 2005, 167, 717-738.
- 14. X. Cai, K. N. Li. ‘A genetic algorithm for scheduling staff of mixed skills under multi-criteria’. European Journal of Operational Research. 2000, 125, 359-369.
- 15. G. Cavory, R. Dupas, G. Goncalves. ‘A genetic approach to solving the problem of cyclic job shop scheduling with linear constraints’. European Journal of Operational Research. 2005, 161, 73-85.
- 16. I. Paprocka, C. Grabowik, W.M. Kempa, D. Krenczyk, K. Kalinowski. ‘The influence of algorithms for basic-schedule generation on the performance of predictive and reactive schedules’. Conf. Series: Materials Science and Engineering. 2018, 400, 1757-8981, DOI:10.1088/1757-899X/400/2/022042.
- 17. S. Bertel, J.-C. Billaut. ‘A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation’. European Journal of Operational Research. 2004, 159, 651-662.
- 18. M.E. Kurz, R.G. Askin. ‘Scheduling flexible flow lines with sequence-dependent setup times’. European Journal of Operational Research. 2004, 159, 66-82.
- 19. R. Cheng, M. Gen, Y. Tsujimura. ‘A tutorial survey of jobshop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies’, Computers & Industrial Engineering. 1999, 36, 343-346.
- 20. J. F. Goncalves, J. J. de M. Mendes, M. G. C. Resende. ‘A hybrid genetic algorithm for the job shop scheduling problem’. European Journal of Operational Research. 2005, 167, 77-95.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d6a8431-1764-4e23-8e5a-63078f4110fc