
Abstract
The publication describes how diffraction methods and mathematical bases can 

be used for measurement of various types of stresses in single-phase and multiphase 
materials. Firstly, the paper defines the stresses and classifies them from the scale of their 
interactions point of view. Subsequently, the phenomenon of radiation diffraction on the 
crystalline lattice is presented including formulas describing this phenomenon and the 
dependencies enabling stress measurements. The key part of the paper is the description 
of one of the second order stress estimation methods based on diffraction data and a self-
consistent model.
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1. Introduction: stress – definition and classification 
Stress can be defined as the measure of force density applied to the surface 

of an object. The stress state can be described by a tensor of rank two.  In this 
analysis, it is assumed that the stress state in the specimen was generated by 
a set of forces as in Fig. 1. The forces acting on the specimen are distributed 
perpendicular to the surface of the specimen and in two shear directions. 
Each stress component σij can be described as a partial derivative of the force 
component and within the area of surface j:

Let σ11, σ22, σ33, represent the normal stress components, while σ12,σ13, σ31, 

σ23, σ32 represent the shear components. The condition of the static balance state, 
which in this case corresponds to the equilibrium of moments, reduces the 
number of the components from 9 to 6 because σij = σji.
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Fig. 1 The stress state in the infinitesimal cubic volume [1].

Of special interest are the residual stresses remaining in the material after 
specimen revealing. The most common reason for the increase in residual 
stresses is the heterogeneous plastic deformation, which can be single-axis or 
multi-axis and can be caused by machining, e.g. rolling, grinding or polishing. 
Residual stresses can also occur during heat treatment due to the temperature 
gradient or thermal the mismatch of the grains of the different phases that 
compose the material. Other causes may include phase transitions during heat 
treatment and hardening processes. 

Residual stresses are very important due to the fact that their values add up 
together with the values of stresses induced by external forces applied to the 
object. Therefore, residual stress may contribute to damage acceleration in the 
material or a component. On the other hand, compressive residual stresses are 
generally desirable in the surface layer of most materials as they can extend 
the service life of a structure by reducing the impact of stresses applied. In 
order to introduce compressive stresses into the surface layer, various methods 
of material processing have been developed.

When analysing diffraction data, it is necessary to define the scale of the 
considerations. The reason for this is that lattice deformations at different levels 
have different effects on the diffraction image. Stresses can be classified into three 
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types/orders depending on the scale of their impact on a structure. The first order 
stresses called macrostress are the mean stresses in the whole volume containing 
a large number of grains [2]. Stresses of this type are mainly induced by the 
heterogeneity of the process on a large scale, e.g. temperature gradient during 
machining. The mathematical definition of the first order stress is as follows:

where:
 – examined volume of the specimen,

 – local stress in  position,
 – g grains volume fraction,

 –  total number of grains in VA volume,
 – average stress value for g grains within VA volume. 

First order stresses can also be defined as phase stresses for the polycrystalline 
material, also called pseudo-stresses (weighed on all grains g of the given ph 
phase within the tested volume VA), induced by various thermal and elastoplastic 
properties of phases or generated during the phase transition process:

where:
 – total numer of ph phase grains.

The stress on a phase can be derived from the elastic phase response when the 
macrostress is applied to the sample  and/or from different thermal 
or plastic behaviour of the phases during sample processing leading to phase 
mismatch stresses  [2], i.e.:

The mismatch stresses remain in the sample even after the external forces 
are released.

In addition, the relationship between macrostress and stress in phase can be 
written as:

where:

(2)

(3)

(4)

(5)
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 – volume fraction of examined phase ph,
 – average stresses for phase ph,

 – number of phases.

Second order stresses are the “deviation” from the first order stresses on the 
grains . They are generated by the different orientation of the crystalline 
lattice with respect to the geometry of the sample, which in turn causes different 
behaviour of crystallites [2]. When external forces are applied to the material, 
the grain elastic response  will depend on the grain orientation because 
the elastic constants of a single crystallite are anisotropic. Another reason for 
occurring of second order stresses is mechanical machining. During the plastic 
deformation of the polycrystalline material, differences in plastic deformation 
of differently oriented grains result in mismatch at the boundary leading to 
the formation of mismatch stress . Second order stress may also occur 
during cooling/heating processes due to the anisotropy of the crystallite thermal 
expansion coefficients leading to grain volume decrease or increase in different 
directions in relation to the specimen geometry. The mathematical formula 
defining the second order stress is as follows:

where  for one-phase materials and  for multi-phase materials.

Stresses on the grain  can be expressed as the combination of stresses 
being the elastic response of the grain  and those resulting from the 
mismatch of shape or volume of the individual grains to its surroundings 

 [2]:

The stresses that define the material on the smallest scale are the stresses of 
the third order. They describe the level of homogeneity on the grain scale. Their 
source is local stress fields around defects in the crystalline lattice and can be 
defined as follows:

(6)

(7)

(8)
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Changes in the diffraction image are different for different orders of stress. 
Stresses of first and second order cause the diffraction peak to shift in relation 
to the position of the peaks from stress free material. The second and third 
order stresses cause the diffraction peak to widen. For the summary of stress 
information for all orders see Table 1 [2]:

Table 1. Types of stresses and their origins [2].

SCALE

I order II order III order

single phase multiphase single and multiphase

OR
IG

IN

loads 
long scale forces

macrostress
× ×

elastic stress
×

×

thermal processes 
plastic processes

incompatibility stress
×

×

lattice imperfections × × ×

Fig. 2 illustrates the idea of stress classification in two-phase materials. 
The first order stresses (green line) are the mean macro scale stresses on the 
specimen. The first order stresses for the different phases of the material (black 
line for the first phase and purple one for the second) are directed in opposite 
directions in relation to the value of the mean macrostress. The stresses of the 
second order (orange line) are the deviation of a single grain for a given phase 
from the stress values of the first order. The stresses of the third order (red line) 
deviate from the mean value of grain stress.
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Fig. 2 Types of stresses in two phases material: I order stress for the whole specimen  
( , I order stresses for different phases (  and ), II order stresses ( ) as a 
deviation from I order stresses for phases and III order stress ( ) as a deviation from 

the second order stress. 

2. Theoretical background of diffraction phenomenon
Until 1912, when Max von Laue conducted his experiment with the use of 

copper sulphate crystals, crystalline materials had only been suspected of having 
a periodical internal structure, which could be observed during the diffraction 
experiment (as in the case with other periodical structures, e.g. diffraction 
grating). The Laue experiment served as the stimulus for W. H. Bragga and 
his son W. L. Bragga to further explore this phenomenon. The phenomenon 
of diffraction is related to phase relationships occurring between two or more 
waves (electromagnetic but also other types, e.g. matter waves). When waves 
are diffracted on a periodical structure, the amplitude of the diffracted waves 
may be increased or decreased in relation to the incident wave depending on 
the phase relationship between the diffracted waves. The obvious conclusion 
following from the above is that the difference between the distances the 
diffracted beams have to pass is the key occurrence of the constructive (higher 
output wave amplitude) or destructive (lower amplitude) interference. The 
phenomenon of constructive interference occurring for non-periodic quasi-
crystalline structures is now also known.
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Fig. 3 The idea of diffraction on lattice planes.

Analysing Fig. 3, where diffraction is considered on the periodic crystalline 
lattice, it can be observed that constructive interference occurs when the 
difference in pathways between the incident and diffraction beams is equal to 
the total multiple (n) wavelengthλ. These considerations led to the formulation 
of Bragg’s law:

Whereθ is the angle between the incident / diffracted beam and the 
crystallographic plane while the angle of 2θ is the angle between the incident 
and diffracted beam.

A condition equivalent to Bragg’s law may be expressed by the use of wave 
vectors k1 i kd for incident and diffracted waves (Fig. 4). 

Fig. 4 Directions and angular dependencies of wave vectors associated with incident 
and diffracted beams. The wave vector as a sum of incident and diffracted ones  

is denoted by Δk.

(9 )
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As can be seen in Fig. 4, the diffraction scattering vector is as follows:

When Bragg’s law is taken into account, the above can be written as:

Then the distance between the plane  will be linked to the vector of the 
reciprocal lattice vector  by the equation:

Taking these two equations into account, it can be concluded that constructive 
interference occurs when:

Since both  and  vectors are parallel to the crystallographic hkl 
plane, a more general conclusion can be written as:

3. Diffraction methods used for stress measurements

3.1. Isotropic specimen –  method

Fig. 5 The example of peak shift as a result of elastic strain of the lattice. 
Measurement performed on ferritic phase in 17-4PH stainless steel with chromium 

X-ray tube.  

(10 )

(11)

(12)

(13)

(14)
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The existence of stress in the material conjoins with a systematic increase 
or decrease in interplanar distances. Distances between the lattice planes can 
be measured by diffraction and Bragg’s law. Based on Bragg’s law, it can be 
deduced that if the distances between the hkl planes increase, the 2θ angle 
decreases.

The most frequently diffraction stress measurements are carried out for one 
specific hkl plane. In this case, the sample rotates around the scattering vector 
Q and for each sample orientation  the position of the diffraction peak 
is determined. In order to describe the measurement, two reference systems 
should be defined: the first associated with the sample and the second, related to 
the measurement geometry, known as the laboratory system (Fig. 6).

Fig. 6 Directions defined for the diffraction stress measurements. The specimen (S) 
and the laboratory (L) systems are defined.

The idea behind the measurement is to tilt and rotate the sample in order 
to get information about the distance between the hkl planes for different sets 
of angles , i.e.  values for such hkl planes for which the 
scattering vector is perpendicular. The average deformation value perpendicular 
to  direction (for grains for which Bragg’s law is fulfilled) is given by the 
equation:

Using the generalised Hook’s law, the relationship between the measured 
mean lattice strain values the  and the strain on the  grain 
is defined in the laboratory system L:

(15)

(16)
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where  is the appropriate component of the elastic compliance tensor 
for a single crystallite defined in the L laboratory system. The prim character 
was used to distinguish between the values defined in the L laboratory system 
(only in the notation of the mean deformation  measured along 
the scattering vector the prim character was omitted). The sign of average value 

 is very important, as it determines the average value of the interplanar 
spacing for a special group of diffracting grains that comply with Bragg’s 
law. Despite the fact that the averaging operation is not commutative with  
a multiplication and the stresses in eq. 16 are not averaged after all grains in the 
sample under consideration, the relationship between the measured lattice strain 
and the stress of the first order  in the examined phase can be described as:

where  are diffraction elastic constants (DECs) and  are 
the first order stresses becoming from different sources, i.e. in the case of a 
single-phase material  and in the case of the multiphase material 

.
It should be noted that the DECs’ values generally depend on angles  

and hkl Miller coefficients, while for the quasi-isotropic sample (without texture) 
there is no reason for angle dependence. Replacement  is 
only justified if the stress values are identical for all crystallites in the sample 
(i.e. when the Reuss model is used). As the first and easiest case, a formula 
will be considered that links the state of stress in the specimen in a given 
direction with the lattice strain in the quasi-isotropic specimen without texture.  
A polycrystalline sample can be considered as isotropic only on a macro-scale 
because within a single grain its elastic anisotropy will always be observed. 
Due to the cylindrical symmetry of the set of diffracting grains, the compliance 
tensor can be defined in the form of Voigt notation [1]:

(17)

(18)
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Using this matrix, the general equation bonding stress and strain may be 
written [1]:

The three components of this equation were neglected because 
.

Assuming the two-dimensional state of stress on the surface of the specimen (as 
for X-ray measurements), i.e.:
defined in relation to the sample reference system S and using the direction cosine, 
the state of stress in the laboratory reference system may be described by means 
of three equations [1]:

where the stress tensor  (without prim character) is defined in relation to the 
sample reference system S.

Applying the equations eq. 19, eq. 20, eq. 21 and eq. 22 it can be written: 

Applying the trigonometric identity :

substituting: 
i 

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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the following equation is obtained:

Using the formula for the interplanar distance in deformed crystal lattice (eq. 
15): 

Relations for  and  are linear in relation to 
. An example is shown in the figure below.

Fig. 7 Typical  plot obtained for 17-4PH stainless steel specimen.

The slope of the straight line determined by this method shall be proportional 
to the stress measured in the  direction. For cases where the values of ,  
and  are negligible (i.e. for neutron or synchrotron radiation when internal 
parts of the material are tested), the equation for  assumes the 
following formula:

and, consequently:

In the most general case (anisotropic sample without special symmetry) the 
general equation eq. 17 should be used. In this case, the determination of Rij, 
which depends on the measuring direction, is essential. 

3.2. Multireflection method – anizotropic specimens with texture
In a standard X-ray experiment, it is usually assumed that the stress 

component perpendicular to the specimen surface  is equal to 0. The key 
feature of the  method is measuring the mean interplanar spacing

(26)

(27)

(28)

(29)
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of . These values are averaged only for grains participating in 
diffraction, i.e. for which the orientation of the scattering vector is perpendicular 
to the crystallographic planes hkl. Therefore, the analysis method with the use of 
quasi-isotropic elasticity constants s1 and s2 is adequate when the second order 
stresses and texture in the test sample are negligible. In this case, and when the 
stress state is of the two-axial nature (i. e. when ) eq. 29 can be 
illustrated as a linear dependence (Fig. 7). If the shear stresses  and  are 
significant in the specimen, the splitting phenomenon occurs (which consists 
in curvature of the plots dla φ and φ+180° in opposite directions) [2]. 
Moreover, in the standard version of this method, the observed diffraction peaks 
correspond only to single hkl planes and the measured lattice strains do not 
represent the whole volume of the tested sample [2].

A more general case occurs when a zero stress value of  cannot be 
assumed, i.e. when neutron or synchrotron radiation that penetrates deep into the 
material is used. Then the differences  and  are determined 
on the basis of the standard  (cf. eq. 29). In addition, in the case of the 
significant texture, anisotropic elastic constants (s1  and s2) cannot be used 
because DECs depend on the orientation distribution function and change with 

 i  angles. The result of the above is that  function with respect 
to  changes its form – it is no longer a linear or an elliptical function, but 
a complex nonlinearity is observed, i.e. a more general equation is necessary to 
describe changes in the interplanar distance [2]:

where:

 – diffraction elastic constants for anisotropic material or for 
a given phase of the multiphase material, usually called X-ray stress factors 
XSF;  results from the transformation of the sample reference system into 
the laboratory reference system:

(30)

(31)

(32)
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Different hkl reflections can be used simultaneously in the multireflection 
method, the idea of which is to obtain  and  (when the regular structure 
is tested) based on the calculated diffraction elastic constants  and 
after the transformation of Eq. 30 by substitution:

The resulting equation is:

As a result of this transformation, instead of many values of unstressed 
interplanar spacings , only one parameter of the unstressed crystalline 
lattice (i.e. a0) is used in the analysis [2].

The advantage of the multireflection method is that the results obtained are 
representative for a large number of grains, to a much greater extent than it is in 
the case of the single reflection method.

3.3. Diffraction methods used for estimation of second order stresses
The effect of the second order stresses on the  plots consists in the 

introduction of non-linearity into these functions. A number of methods have 
been developed to calculate approximate values of second order stress. One of 
them is the method proposed and developed by Baczmański [3] – [4]. In this 
method, the quantitative approximation of the first and second order stresses is 
the result of reference to the diffraction data and to the self-consistent model.  
In addition, the multireflection method enables obtaining more representative 
data by the simultaneous fitting of different hkl reflections.

The equation that conjoins the strains and stresses, including the first type of 
stresses (macrostresses or phase stresses) and mismatch stresses, is [2]:

It should be noted here that the second order mismatch stresses  
do not disappear after the specimen is unloaded. In addition, their value can 
be approximated by model-based calculations of the self-consistent model, in

(33

(34)

(35)

(36)
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which the input data include the type of reinforcement mechanism that occurs 
during plastic deformation. Since the description of the hardening process is 
complicated (requires consideration of additional empirical laws) and not 
always possible to simulate with the use of the model, it is usually assumed that 
values  approximated by the model values, which are not equal to 
the actual stresses of the second order but proportional to them, i.e.: 

These two values, i.e. actual and model second order stress values, are 
related to each other by the scale parameter q, which is not dependent on the 
grain orientation g. 

Taking into account Eq. 37, Eq. 30 and Eq. 35 will change:

The alignment procedure using the least square method provides information 
on the parameters, i.e. the first order stress , the scale parameter q, the lattice 
parameter  and the interplanar spacing  (lub )  for the unstressed 
specimen. If the value of q parameter is close to 1, model predictions of second 
order mismatch stresses are correct while in the case when , model values 
will be overestimated, which is associated with stress relaxation in the actual 
sample. When , the reinforcement process was not correctly predicted. 
If the value q is determined by the procedure of the least square procedure, the 
actual value of second order stresses may be determined by multiplying the 
model values, cf. Eq. 37

(37)

(38)

(39)
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