Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern drives with Permanent Magnet Synchronous Motors (PMSMs) require both efficient control structure to ensure excellent dynamics and effective diagnostic algorithms to detect the motor faults that can occur. This paper shows the combination of both mentioned aspects – the direct-axis based signals of the Field Oriented Control (FOC) structure are proposed as diagnostic signals to allow diagnosing the interturn short-circuit failure that can appear inside stator windings. The amplitudes of second order harmonics are selected as the fault indicators. Different modelling methods are analysed and compared in detail in this paper: an analytical mathematical model, a Finite Element Method (FEM)- based model and next verified using a laboratory setup. The results obtained using all the mentioned models proved that the proposed fault indices are increasing significantly with the number of shorted turns and are independent on the load torque level.
Czasopismo
Rocznik
Tom
Strony
103--124
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wz.
Twórcy
autor
- Wrocław University of Science and Technology Department of Electrical Machines, Drives and Measurements Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology Department of Electrical Machines, Drives and Measurements Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology Department of Electrical Machines, Drives and Measurements Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Mishra A., Agarwal P., Srivastava S.P., A comprehensive analysis and implementation of vector control of permanent magnet synchronous motor, International Journal of Power and Energy Conversion, vol. 5, no. 1, pp. 1–23 (2014), DOI: 10.1504/IJPEC.2014.059982.
- [2] Chen Y., Liang S., Li W., Liang H., Wang C., Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review, Applied Sciences, vol. 9, no. 10, pp. 2116–2132 (2019), DOI: 10.3390/app9102116.
- [3] Orlowska-Kowalska T., Wolkiewicz M., Pietrzak P., Skowron M., Ewert P., Tarchala G., Krzysztofiak M., Kowalski C.T., Fault Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges, IEEE Access, vol. 10, pp. 59979–60024 (2022), DOI: 10.1109/ACCESS.2022.3180153.
- [4] Cardoso A.J.M., Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives, IET – The Institution of Engineering and Technology (2018).
- [5] Ge Y., Song B., Pei Y., Mollet Y.A.B., Gyselinck J.J.C., Analytical Expressions of Isolation Indicators for Permanent-Magnet Synchronous Machines Under Stator Short-Circuit Faults, IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 984–992 (2019), DOI: 10.1109/TEC.2018.2878343.
- [6] Gao F., Zhang G., Li M., Gao Y., Zhuang S., Inter-turn fault identification of surface-mounted permanent magnet synchronous motor based on inverter harmonics, Energies, vol. 13, no. 4, pp. 899–912 (2020), DOI: 10.3390/en13040899.
- [7] Romeral L., Urresty J.C., Riba Ruiz J.-R., Garcia Espinosa A., Modeling of Surface-Mounted Permanent Magnet Synchronous Motors with Stator Winding Interturn Faults, IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1576–1585 (2011), DOI: 10.1109/TIE.2010.2062480.
- [8] Farooq J.A., Raminosoa T., Djerdir A., Miraoui A., Modelling and simulation of stator winding inter-turn faults in permanent magnet synchronous motors, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 27, no. 4, pp. 887–896 (2008), DOI: 10.1108/03321640810878306.
- [9] Boileau T., Leboeuf N., Nahid-Mobarakeh B., Meibody-Tabar F., Synchronous demodulation of control voltages for stator interturn fault detection in PMSM, IEEE Transactions on Power Electronincs, vol. 28, no. 12, pp. 5647–5654 (2013), DOI: 10.1109/TPEL.2013.2254132.
- [10] Meinguet F., Semail E., Kestelyn X., Mollet Y., Gyselinck J., Change-detection algorithm for short-circuit fault detection in closed-loop AC drives, IET Electric Power Applications, vol. 8, no. 5, pp. 165–177 (2014), DOI: 10.1049/iet-epa.2012.0316.
- [11] Mazzoletti M.A., Bossio G.R., De Angelo C.H., Espinoza-Trejo D.R., A Model-Based Strategy for Interturn Short-Circuit Fault Diagnosis in PMSM, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7218–7228 (2017), DOI: 10.1109/TIE.2017.2688973.
- [12] Hang J., Zhang J., Xia M., Ding S., Hua W., Interturn Fault Diagnosis for Model-Predictive-Controlled- PMSM Based on Cost Function and Wavelet Transform, IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6405–6418 (2020), DOI: 10.1109/TPEL.2019.2953269.
- [13] Wu C., Jiang S., Bian C., Online parameter identification of SPMSM based on improved artificial bee colony algorithm, Archives of Electrical Engineering, vol. 70, no. 4, pp. 777–790 (2021), DOI: 10.24425/aee.2021.138260.
- [14] Hang J., Zhang J., Ding S., Huang Y., Wang Q., A Model-Based Strategy with Robust Parameter Mismatch for Online HRC Diagnosis and Location in PMSM Drive System, IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 10917–10929 (2020), DOI: 10.1109/TPEL.2020.2978139.
- [15] Fonseca D.S.B., Santos C.M.C., Cardoso A.J.M., Stator Faults Modeling and Diagnostics of Line-Start Permanent Magnet Synchronous Motors, IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2590–2599 (2020), DOI: 10.1109/TIA.2020.2979674.
- [16] Yang Z., Chen Y., Interturn Short-Circuit Fault Detection of a Five-Phase Permanent Magnet Synchronous Motor, Energies, vol. 14, no. 2, pp. 434–451 (2021), DOI: 10.3390/en14020434.
- [17] Jeong H., Lee H., Kim S.W., Classification and Detection of Demagnetization and Inter-Turn Short Circuit Faults in IPMSMs by Using Convolutional Neural Networks, IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, pp. 3249–3254 (2018), DOI: 10.1109/ECCE.2018.8558191.
- [18] Huang S., Aggarwal A., Strangas E.G., Li K., Niu F., Huang X., Robust Stator Winding Fault Detection in PMSMs with Respect to Current Controller Bandwidth, IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5032–5042 (2020), DOI: 10.1109/TPEL.2020.3030036.
- [19] Skowron M., Orlowska-Kowalska T., Kowalski C.T., Detection of permanent magnet damage of PMSM drive based on direct analysis of the stator phase currents using convolutional neural network, IEEETransactions on Industrial Electronics, vol. 69, no. 12, pp. 13665–13675 (2022), DOI: 10.1109/ TIE.2022.3146557.
- [20] Moosavi S.S., Djerdir A., Ait-Amirat Y., Khaburi D.A., ANN based fault diagnosis of permanent magnet synchronous motor under stator winding shorted turn, Electric Power Systems Research, vol. 125, pp. 67–82 (2015), DOI: 10.1016/j.epsr.2015.03.024.
- [21] Fitouri M., Bensalem Y., Abdelkrim M.N., Modeling and detection of the short-circuit fault in PMSM using Finite Element Analysis, IFAC-PapersOnLine, vol. 49, no. 12, pp. 1418–1423 (2016), DOI: 10.1016/j.ifacol.2016.07.769.
- [22] Sun W., Hang J., Ding S., Hu Q., Ren X., Electromagnetic Parameters Analysis of Inter-Turn Short Circuit Fault in DTP-PMSM Based On Finite Element Method, 8th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, pp. 1–4 (2020), DOI: 10.1109/PESA50370.2020.9344033.
- [23] Qiu H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
- [24] Pietrzak P., Wolkiewicz M., Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents, Energies, vol. 14, no. 6, pp. 1630–1653 (2021), DOI: 10.3390/en14061630.
- [25] Pietrzak P., Wolkiewicz M., Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 70, no. 2, pp. 1–11 (2022), DOI: 10.24425/bpasts.2022.140556.
- [26] Pietrzak P., Wolkiewicz M., On-line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current Symmetrical Components Analysis and the KNN Algorithm, Electronics, vol. 10, no. 15, p. 1786 (2021), DOI: 10.3390/electronics10151786.
- [27] Wang B., Wang J., Griffo A., Sen B., Stator turn fault detection by second harmonic in instantaneous power for a triple-redundant fault-tolerant PM drive, IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7279–7289 (2018), DOI: 10.1109/TIE.2018.2793188.
- [28] Yao Y., Li Y., Yin Q., A novel method based on self-sensing motor drive system for misalignment detection, Mechanical Systems and Signal Processing, vol. 116, pp. 217–229 (2019), DOI: 10.1016/j.ymssp.2018.06.030.
- [29] Phung V.T., Pacas M., Sensorless harmonic speed control and detection of bearing faults in repetitive mechanical systems, IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 – ECCE Asia), Kaohsiung, Taiwan, pp. 1646–1651 (2017), DOI: 10.1109/IFEEC.2017.7992294.
- [30] Quintal-Palomo R., Dybkowski M., Modelling and co-simulation of small wind turbine with permanent magnet synchronous generator, Przegląd Elektrotechniczny, vol. 1, no. 10, pp. 210–215 (2019), DOI: 10.15199/48.2019.10.45.
- [31] Mohamed Y.A.R.I., Radwan A.A.A., Lee T.K., Decoupled reference-voltage-based active DC-link stabilization for PMSM drives with tight-speed regulation, IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4523–4536 (2011), DOI: 10.1109/TIE.2011.2182013.
- [32] Zelechowski M., Space Vector Modulated–Direct Torque Controlled (DTC–SVM) Inverter–Fed Induction Motor Drive, Warsaw University of Technology, Ph.D. Thesis, Warsaw (2005).
- [33] Jaeger M., Drichel P., Schröder M., Berroth J., Jacobs G., Hameyer K., On magnetization deviations as the dominant cause for vibration harmonics in the spectrum of a PMSM drive, Archives of Electrical Engineering, vol. 70, no. 3, pp. 719–730 (2021), DOI: 10.24425/aee.2021.137584.
- [34] Jankowska K., Dybkowski M., A current sensor fault tolerant control strategy for PMSM drive systems based on Cri markers, Energies, vol. 14, no. 12, p. 3443 (2021), DOI: 10.3390/en14123443.
- [35] Skowron M., Krzysztofiak M., Orłowska-Kowalska T., Application of PMSM fault detector based on Kohonen classifier and FEM model, International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, pp. 814–819 (2022), DOI: 10.1109/SPEEDAM53979.2022.9842181.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d653eaa-8389-401b-97e8-b516ebf05fae