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Abstract 

A highly complex dynamic non-linear reactor is the blast furnace iron manufacturing system. It has possible 

dangers, including carbon monoxide, wide variety of chemical reactions, fire, high pressure and explosion, 

noise, split and fall, hot metal sparks, hit etc. To ensure a secure working, organizations must take the required 

measures to manage the risks and their effects. The approach for risk assessment discussed in this research 

attempts to increase blast furnace safety performance and reduce workers injuries. This approach uses 

probability distribution and an improved machine learning techniques such as radial basis function artificial 

neural networks (RBANN). The novelty here is to calculate a multivariate risk using a proposed method, namely 

exponential smoothing combined with radial basis function artificial neural networks (ES-RBANN). To 

identify their limits, the results of a research comparing conventional and novel techniques are confirmed using 

real data collected from the steel production operations ArcelorMittal-Annaba, Algeria. 
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and the 𝑙𝑡ℎ neuron in the output layer; 

𝐽𝑡−1 – Jacobian matrix; 

𝑦𝑝,𝑡+1 – Output of RBANN technique; 

𝑦̂𝑙– Predicted output of the node network output layer; 

𝑇𝐿 – Single lower tolerance limit;    

𝑇𝑈  – Single upper tolerance limit;    

||.|| – Euclidean norm; 

𝑐𝑘– Center; 

ES-RBANN – Exponential smoothing combined with 

radial basis function artificial neural networks; 

𝐺𝑘 – k activation function;  

Pc – Conformity probability;  

PDF – Probability density function; 
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x – Input variables;  

𝑍 – Standarization; 

𝛾 – Width of the hidden layer; 

𝜇 – Mean; 

𝜎 – Standard deviation; 

𝜑 – Cumulative density function CDF; 

𝛼 – Regularization parameter; 

 

1. INTRODUCTION 

 

The Modern manufacturing systems often 

consist of a number of dependent parameters that 

have been identified, as it is difficult to analyze and 

monitor. The stable and safe operation of each 

process is critical to the success of the system; 

however, deviations from the norm reduce 

productivity. Therefore, regular monitoring is 

necessary to preserve the production's performance 

and quality. As a result of continuous monitoring, 

estimating the evolution of the risks and failures 

becomes possible to predict precaution and 

maintenance policies. Analyzing product quality can 

be challenging because of the uncertainty in time 

delay needed to obtain accurate findings, especially 

in complex systems such as blast furnace. 

Blast furnace ironmaking is a major source and 

an essential part of both iron and steel 
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manufacturing. They are expensive assets that have 

a significant contribution to lifting a country's 

economy, and any accidents or malfunctions can 

lead to significant financial losses. Risk assessment 

helps protect these valuable assets and emergency 

preparedness. Safety is a major issue, and knowing 

the hazards related to their operation is crucial to 

protect workers and the surrounding environment, 

including air and water. For this, we are willing to 

develop new techniques to improve safety practices. 

The pig iron temperature, circular pressure, and hot 

wind temperature are the most important indicators 

of blast furnace production and hazard; so by only 

predicting the multivariate risk of those parameters 

can approximately control blast furnace process. 

Nowdays there are many ways for blast furnace risk 

assessment research, we can cite failure modes and 

effects analysis (FMEA) [17], ultrafine particle risk 

assessment in the blast furnace production process 

[7], hazardous amounts of cement based 

solidification process are produced when fly ash and 

blast furnace slag from municipal solid waste 

incinerators are combined [12], forecast of blast 

furnace gas production using data driven and 

mechanism techniques [11] and [16] and modeling 

and identifying metallurgical systems using 

multivariate statistical control and data mining 

techniques [7, 8, 10, 19].   

Generally, the different hazard is evaluated using 

the above-cited methods like FMEA. In this paper, 

we propose a novel method for measuring and 

monitoring blast furnace quality and analyze a 

multivariate risks using hybrid dynamic method 

based on a robust artificial intelligence method and 

probability distribution. 

The major motivations using this approach are: 

1. The application nature is characterized by a 

multivariate and highly nonlinear system. 

2. The proposed approach is quite easy to 

implement. 

This paper is structured as follows: The 

suggested inferential model for risk assessment is 

presented in Section 2, utilizing data mining and the 

normal probability distribution. With credible data, 

Section 3 provides a typical application of how the 

suggested procedures are used; where the first step is 

to assess the local (upper/lower) and global risks 

based on probability theory, and the second one is 

modelling. At this latter, multiple regression models 

are developed using the calculated risks in the first 

step, taking into account all dependencies. We finish 

with a comparative study between conventional and 

developed methods, and concluding remarks. 

 

2. BLAST FURNACE IRONMAKING 

SYSTEM WITH OPTIMIZATION 

TECHNOLOGY 

 

Blast furnace is one of the most important 

industrial processes using coal and coke as primary 

fuel, its main components are several specific such 

as charging equipment; cooling circuit, hot wind 

production assembly, and large cylindrical shaft 

furnace. 

The temperature of  hot metal and pressure in the 

ironmaking industry does not only signify the 

consumption of energy but also reflects the degree of 

purity and manufacturing rate. When the 

temperature rises too high, a great amount of fuel is 

consumed, and breakages can occur, resulting 

significant increases in productivity losses and 

maintenance expenses. Conversely, if the 

temperature gets too insufficient, the blast furnace 

tap holes can get clogged, and production costs for 

following steelmaking processes will rise [19]. 

Additionally, inadequate pressure can slow down the 

combustion of coke and impedes the chemical 

reactions necessary for the reduction of iron ore, 

leading to lower production rates and a reduced 

overall efficiency. 

Their main operation mode is as follows: from 

the top of the furnace, successive layers of solid raw 

materials like ore iron and coke are charged [11]. 

Due to their unique weight, they progressively sink 

to the bottom of the heating until it melts. Whereas, 

the hot combustion gases ascend via the combustion 

column materials. These combustion and 

gasification events generate a tremendous quantity 

of heat, resulting in a high flame temperature in the 

raceway zone ranging from 1231 °C to 1478 °C [19]. 

As the molten metal flows, it combines with cast iron 

and slag upon entering the crucible. At the point of 

combustion, the materials separate in two parts: 

molten slag on one aspect and molten hot metal 

(typically contains about 92-94% iron). On the 

opposite aspect, those accumulate in accordance to 

its respective specific masses. The slag pouring hole, 

that is set higher than the cast iron pouring hole, is 

used to evacuate the slag. After a long time of 6-8 

hours, the adjusted factors from the top (pig iron and 

coke) transform the hot metal compositions. The 

adjusted factors (gas, hot and air) entering from the 

bottom have an attractive immediate influence on the 

compositions. In most cases, the composition of both 

the hot metal and the slag is determined through 

spectroscopic measurements conducted on samples 

from these materials. Blast furnace slag is widely 

used in industry for binders, artificial stone, thermal 

insulation materials (slag pumice and slag wool) and 

slag cement. Furthermore, it can be used as an 

aggregate in road construction and maintenance. On 

the other hand, hot metal can be alloyed with other 

metals to create specific alloy compositions with 

desirable properties. Modeling blast furnaces is quite 

challenging because of the high pressure, diverse 

chemical reactions, and complicated heat and mass 

transmission mechanisms that occur between multi-

phase materials, such as solid-solid, solid-gas, 

liquid-liquid and liquid-gas phases interacting [20]. 

Despite the finest expert attempts to resolve these 

issues, difficulties still exist (see Diagram 1). Our 

motivation is to explore the capability of both 

conventional and advanced methods to build 

credible models capable of accurately forecasting 



DIAGNOSTYKA, Vol. 25, No. 1 (2024)  

Azzedine A, Nouri FZ, Bouhouche S: A new hybrid approach based on probability distribution and an … 

 

3 

Pig iron temperature risk. This parameter possesses 

a significant importance as it plays a crucial role in 

estimating the quality of iron in the blast furnace 

process. 

 

Diagram 1. A schematic of the blast furnace. 

 

3. RELIABILITY ASSESSMENT AND DATA 

DRIVEN TECHNIQUES 

 

3.1. Normal Distribution 

In many research fields such as statistics and data 

analysis, the normal distribution, often known as the 

Gaussian distribution or bell curve, is one of the most 

popular and important continuous probability 

distributions [10,14]. The probability density 

function (PDF) for the normal distribution is defined 

as follows: 
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The reliability function 𝑅(𝑡) for normal 

distribution is defined by: 
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 The 𝑍 transformation used to transform the 

normal PDF to the so-called standard normal PDF, 

for which 𝜇 = 0 and 𝜎 = 1, is of the form: 
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 3.2. Conformity probability and associated risk 

levels 

To assess the conformity of specified parameters, 

several items are required, such as an interval 

[𝑇𝐿   𝑇𝑈] of allowed values of the parameters is 

provided, where 𝑇𝐿  and 𝑇𝑈 are single lower and 

upper tolerance limit, respectively, as shown in 

Diagram 2.. Additionally, the ability to measure the 

property and express the measurement results in 

according to the Guide Uncertainty Measurement’s 

principles [4 and 14]. 

The probability that measures 𝑥 in the given 

range [𝑚, 𝑛] (m, n are taken from the data) is 

𝑃(𝑚 ≤ 𝑥 ≤ 𝑛) = ∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑛) − 𝐹(𝑚)
𝑛

𝑚
,     (6) 

 where 𝑥 represents the input variables, which 

include Pig iron temperature, Circular pressure, and 

Hot wind temperature. 

Using the procedure that led to expression (6), 

the probability for 𝑚 ≤ 𝑥 ≤ 𝑛 

𝑃(𝑚 ≤ 𝑥 ≤ 𝑛) = 𝜑 (
𝑛−𝑥

𝑢
) 𝜑 (

𝑚−𝑥

𝑢
),                       (7) 

where 𝑢 is the standard uncertainty. 

 

A. One-sided tolerance intervals with normal 

PDFs 

*Single lower tolerance limit 

  From expression (7), with 𝑚 = 𝑇𝐿, 𝑛 → ∞ and 

note that 𝜑(∞) = 1, the conformity probability is: 
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*Single upper tolerance limit 

The conformance probability is as follow using 

equation (7), with 𝑚 → ∞, 𝑛 = 𝑇𝑈 , and note that 

𝜑(−∞) = 0: 
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B. Two-sided tolerance intervals with normal 

PDFs 

Equation (7) with 𝑛 = 𝑇𝑈 and 𝑚 = 𝑇𝐿  leads to 

the conformance probability: 
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Diagram 2. Interval of tolerance with a Two-

sided tolerance limit 

 

3.3. Radial Basis Function Artificial Neural      

Network (RBANN) 

The RBANN is a universal non-linear layered, 

special type of feed-forward supervised neural 

networks, typically is consisting of three layers 

namely input, output, and just one hidden layer 

composed of a number of RBANN non-linear 

activation units or more. Activation functions in 

RBANN are ordinarily defined as Gaussian 

functions. Moreover, RBANN benefit from 

important advantages such as the accuracy, the 

robustness, and the faster learning speed. For more 

details, refer to ([6] and [18]).  

The network hidden layer output of the 𝑘𝑡ℎ 

activation function 𝐺𝑘 is calculated using the 

following equation: 

 ( ) 2
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Here, .   is the Euclidean norm, 𝑐𝑘 is the center, 

and    is the width of the hidden layer. 

In this case, the output 𝑦̂𝑙 of the node 𝑙 of the 

Network output layer can be computed by: 
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Where lkw is the weight between the 
thk neuron in 

the hidden layer and the 
thl neuron in the output one, 

and lb is the 
thl  bias in the output layer. 

The identified model using RBANN is estimated 

by a robust algorithm, such as Levenberg-

Marquardt. The following formula provides the 

recursive form: 
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where  𝐼 is the identity matrix with 1−t  a 

constant and 𝑒𝑡−1, 𝐻𝑡−1 and 𝐽𝑡−1 are the modeling 

error, the Hessian and the Jacobian, respectively. 

The general structure of RBANN network 

applied in this work is defined as follow: 

 

 
 

Diagram 3. Structure of RBANN network. 

 

3.4 Exponential Smoothing combined with 

RBANN (ES-RBANN) 

For the Exponential Smoothing method, we refer 

to [1] with the following equations: 

 ,1,1,1 −−− −= tptct yy  (15) 

 tptct yy ,, −=  (16) 

Here we try to compute the first smoothing value  

𝑦𝑝𝑛 and the parameter 𝛼  

 ( ) 11 *1* −+ −+= ttt   (17) 

 11,1, +++ += ttptpn yy   (18) 

where 𝜀 is error,  𝑦𝑐,𝑡 is the output calculated by 

the probability theory at time t. 𝑦𝑝,𝑡+1 and  𝑦𝑝𝑛,𝑡+1 

are the output of RBANN and ES-RBANN 

techniques at time t + 1, respectively. 

 

4. MULTIVARIATE RELIABILITY 

ANALYSIS APPLICATION IN BLAST 

FURNACE 

 

In this section, we present the risk evaluation 

model structure, as shown in Diagrams 4 and 5.  

 

Note that the inputs of RBANN are Hot wind 

temperature and Circular pressure risks, while the 

output is Pig iron temperature risk. 

The graphical representation of input models are 

shown in Figure 1. Tables 1. and 2. show the 

descriptive statistics of collected samples and the 

Correlation Matrix, respectively. 

Additive risk: is an addition operation of the 

defect probability of different causes, this is applied  

if at least one cause could generate a defect, 

Multiplicative risk: is a multiplication operation 

of the defect probability of different causes, this is 

applied if all causes could generate a defect, 

Global risk: is a combinate relationship between 

additive and/or multiplicative risks. 

 

4.1. Numerical experimentation 

The developed numerical algorithms and  the 

obtained results for the method described in the 

previous sections are presented in this section. 
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Diagram 4. Model structure using probability theory 

 

 

 

Diagram 5. Model structure using data driven techniques 

 

Fig. 1. The graphical representation of model inputs 

 

 

Table 1. Descriptive statistics of collected samples 

 

Descriptive statistics 

 

Parameters 

Pig iron  temperature Circular pressure Hot wind temperature 

Mean 1446.50 1.6 1055.20 

Median 1451 1.66 1070 

Mode 1443 1.54 1075 

STD Deviation 29.04 0.24 43.69 

Variance 843.45 0.059 1909.03 

Coefficient of variation 2.93 12.26 3.41 

Range 247 1.91 273 

Minimum 1231 0 827 

Maximum 1478 1.91 1100 

Table 2. Correlation Matrix 

 Pig iron  

Temperature 

Circular 

Pressure 

Hot wind Temperature 

Pig iron temperature 1 0.1173 0.2453 

Circular pressure 0.1173 1 0.4675 

Hot wind temperature 0.2453 0.4675 1 
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Risk evaluation using probability theory 

Algorithm 

Step 1: Define upper control limit 𝑇𝑈. 

Step 2: Define Lower control limit 𝑇𝐿 . 

For i = 1 : N (N= Number of inputs) 

For j = 1 : M (M= Number of samples) 

Step 1: Normalization using equation (4). 

Step 2: Compute normal probability distribution. 

Step 3: Compute conformance probability of lower 

and upper tolerance limit using (9) and (10), 

respectively. 

Step 4: Compute conformance probability of Two-

sided using equation (11). 

end j, 

end i. 

 

RBANN Algorithm 

The developed RBANN algorithm in the 

multivariable form is implemented using  

the following Algorithm.  

Step1: Initialize the network weights as : 

  𝑓 → 𝑅𝐵𝐴𝑁𝑁. 

Step2: Initialize the network weights to be:  

𝑊𝑖𝑗
0 = [−0.5, +0.5]. 

Step3: The computational loop is characterized as    

for 𝑡 = 1: 𝑀,  

1. Acquisition of inputs/outputs (𝑥𝑡 , 𝑦𝑡). 

2. Compute G using equation (12). 

3. Calculate the output model 𝑦̂(𝑡) from (13). 

4. Calculate the modeling error 𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡)  

a) If 𝑒(𝑡) ≈ 0, 𝑊𝑖𝑗
𝑡 = 𝑊𝑖𝑗

𝑡−1stop: 𝑊𝑖𝑗
𝑡 = 𝑊𝑖𝑗

[∗]
. 

b) Else, use the recursive algorithm to adjust the 

NN weights: 

𝑊𝑖𝑗
𝑡 = 𝑊𝑖𝑗

𝑡−1 + 𝐺(𝑡)𝑒(𝑡) by Levenberg-Marquardt 

algorithm from equation (14). 

End t. 

 

ES-RBANN Algorithm 

we use the same procedure as in RBANN algorithm 

together with the following loop 

For i = 1 : M, 

Step1: Compute the residual at times t-2 and t-1 

from equations (15) and (16). 

Step2: Compute the residual at time t using  

equation (17). 

Step3: Compute the first smoothing value 𝑦𝑝𝑛 using 

equation (18). 

End i, 

Step4: Compute Standard deviation uncertainty 

between the output model and the prediction. 

 

4.2. Results and Discussion 

The present risk assessment study was proceeded 

as follows:  

▪ First, the different risks of exceeding limits 

were evaluated by using theory of probabilities 

and assuming that the distribution laws are 

normal for each parameter, 

▪ As the process is complex, it contains several 

parameters, so the first step is completed by the 

search of complex relationship between various 

generated risks and the final situation i.e.  

the global risk, 

▪ Additive or multiplicative risks are introduced 

to generate the global risk according to the 

process type (parallel or series) i.e. a risk can be 

a result of combination of other risks according 

to the system complexity. 

In order to improve training and testing phases, 

a modest number of samples of 365 tests and 

several input variables have been used for this 

study. Finally, a comparative study between 

RBANN and ES-RBANN techniques is realized, 

and the best model is selected using standard 

deviation (STD) performance indicator. 

The obtained results are resumed in Tables 1-5 

and Figures 1-5, such that: 

Figure 1 represents results for the three variables, 

Pig iron temperature, Circular pressure, Hot wind 

temperature as a function of time in days, along with 

their upper and lower control limits.   

Table 1 gives us the different statistical summary 

of collected data. These statistics provide insights 

into the central tendency (Mean, Median, and 

Mode), variability (Range, Variance, Standard 

deviation, and Coefficient of variation), and 

distribution (Skewness and Kurtosis) of data for each 

of the three variables. These results can be helpful 

for further analysis and decision-making related to 

the dataset. 

Table 2 shows that the Circular pressure exhibits 

a moderate positive correlation with Hot wind 

temperature, with a correlation coefficient of around 

0.4675; while, the correlation between Pig iron 

temperature and Circular pressure is approximately 

0.1173, indicating a relatively weak positive 

correlation. This means that as Pig iron temperature 

increases, there is a slight tendency for Circular 

pressure to increase as well. At last, the correlation 

between Pig iron temperature and Hot wind 

temperature is about 0.2453, showing a moderately 

positive relationship. When the temperature of the 

pig iron raises, the temperature of the hot wind also 

does. 
In Table 3, all three parameters were classified as 

high risk because they exceed the acceptable 
minimum level (0.3) for many days; it can even 
reach more than 0.8. The typical classification is 
generally daily, as the curves precisely shows (see 
Figure 2), while Table 3 gives a general decision that 
encompasses the whole year. It is well known that 
the hazards of smelting furnaces are very sensitive to 
the fear of explosion resulting from high pressure 
levels or high temperatures, while for low 
temperatures, liquid iron can freeze inside the 
furnace. 

Figures 2 shows upper/lower risks of each 
variable followed by the combined risk from both 
upper and lower limits simultaneously, respectively. 
It is noteworthy that all variables exceed the control 
limit. For instance, the pig iron temperature risk 
exceeds more than 15 times, Circular pressure risk 
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surpasses it more than 22 times, and Hot wind 
temperature risk exceeds it more than 13 times. 

Figure 3. displays global multiplicative/additive 
risks. For the additive risk, every day carries a 
significant level of risk, whereas the system indicate 
only two warnings related to the multiplicative risk. 

Figure 4. and Table 4. show the results for the 
regression analysis in two parts modeling and 
prediction using different developed methods such 
as RBANN and ESRBANN. These obtained results 
show effective multivariate techniques, used to treat 
complex data sets, as described in Sections 3.3. and 
3.4. In addition, the proposed method ES-RBANN 
provides the highest prediction accuracy when 
compared to the conventional RBANN approaches 
and can be considered as the best tool. In the 
modeling part, 294 samples are used for training, 
while a new data set of 71 samples are used for 
testing. 

For RBANN approach, two hidden layers were 
used, where in the first one the activation function 
was the radial basis transfer function (Radbas) with 
20 neurones, while in the second, the symmetric 
sigmoid transfer function (tansig) was used as an 
activation function with 10 neurones. The number of 
learning epochs was set to 500, and the used 
algorithm was the one due to Levenberg Marquardt.  
However, in the case of ES-RBANN technique, the 
parameter alpha was set to 0.001.The performance 
function used here is the “Mean squared normalized 
error “. 

Figure 5. shows the regression function. Here the 
coefficient of determination R-squared = 0.9476 is 
very high, indicating that the regression model using 
neural networks is performing very well. This 
implies that the independent variables in the model 
indicate about 94.76% of the variance in the 
dependent variable. In simple terms, the model 
captures and predicts the relationships between the 
features and the target variable well. 

 

Fig. 2. Risks of different parameters 

 

 

Fig. 3. Global Risks additive and multiplicative 

Table 3. Conformity and Nonconformity 

decision 

Risks Decision Risk level 

Pig iron 

temperature 

Nonconformity high risk 

Circular pressure Nonconformity high risk 

Hot wind 

temperature 

Nonconformity high risk 

 

 

Fig. 4. Training and testing of pig iron 

temperature risk prediction and Errors 

 

 

Fig. 5.  Regression function  
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Table 4. Statistical performance indicators of RBANN 

and ES-RBANN methods 

Methods STD (Training) STD (Testing) 

RBANN 0.0828 1.2477 

ES-RBANN 0.0056 0.0085 

 

Table 5. Coefficients  

Coefficients 1 Coefficients 2 

-7.6646 14.1245 

-5.4007 -3.6715 

1.6611 0.3191 

-2.4965 -5.6045 

-6.3913 5.6646 

12.4783    -9.8946 

2.6868     5.9346 

-0.4034     8.0453 

    9.9743     5.5347 

   -6.5638    -1.8671 

    4.9285   -26.8890 

5.6585    -4.7716 

-2.9955    19.4189 

    7.5337   -14.6419 

-7.3624     6.3862 

-20.9519    17.0846 

-3.1086    33.3460 

6.2603    -6.8819 

18.0804   -12.7824 

-5.3086    -3.5737 

   -0.1424    15.1360 

-0.1424    15.1360 

-0.3409    -6.3014 

-39.1578    43.4974 

   -4.6247     6.0376 

   -4.8445     2.2710 

 

5. CONCLUSION 

 

This work is a modest contribution to the field of 

control systems, focusing on strengthening the 

critical task of risk detection and mitigation. This 

vital task is inextricably linked to the improvement 

of safety protocols and the minimization of system 

failures. Our principal findings are: 

(1) We have successfully carried out a 

comprehensive multivariate risk assessment, 

combined with an in-depth examination of failure 

systems, using a combination of statistical 

distribution models, including the normal 

distribution, and advanced machine learning 

methodologies, 

(2) The obtained results clearly underscore the 

superior precision and accuracy of the ES-RBANN 

technique compared to the conventional RBANN 

method, particularly in handling uncertainties and 

risk quantification, 

(3) Our generated models have gone through 

extensive validation procedures using real-world 

data, confirming their practical applicability and 

value. 
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