Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Oceanic mesoscale eddies and their physical and dynamical characteristics are studied using a high-resolution numerical model in the Bay of Bengal (BoB), a semi-enclosed bay based in the northeast Indian Ocean (IO). The formation, duration, and kinetic energy of these eddies are primarily influenced by the intensity of surface currents, upper-ocean stratification, and regional bathymetry. The Indian Ocean Dipole (IOD) is a dominant mode of interannual variability in the IO, which influences ocean currents in the BoB apart from the well-known dipole observed in sea surface temperature between eastern and western IO. The high-resolution numerical experiments with positive and negative phases of IOD atmospheric forcing reveal the influence of anomalous circulation prevailing in the negative IOD (nIOD) and positive IOD (pIOD) on mesoscale eddies and their kinetic energy in the BoB. A notable disparity in the eddies’ characteristics was observed in both nIOD and pIOD and compared to normal years. In pIOD or nIOD, the number of eddies enhanced but their average lifespan reduced in the BoB. The increase in eddies was higher (38%) in nIOD than pIOD (11.2%) when compared to normal (non-IOD) years. The contribution of eddies to the total eddy kinetic energy (EKE) of the BoB increased from about 10% in normal years to about 25% in either of the IOD phases. The largest influence of IOD is seen at the thermocline depth. Within the BoB, the Andaman Sea region experienced the largest variations in eddies during IOD years.
Czasopismo
Rocznik
Tom
Strony
Art. no. 67102
Opis fizyczny
Bibliogr. 58 poz., map., rys., tab., wykr.
Twórcy
autor
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India
autor
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
Bibliografia
- 1. Anila, S., Gnanaseelan, C., 2023. Coupled feedback between the tropics and subtropics of the Indian Ocean with emphasis on the coupled interaction between IOD and SIOD. Glob. Planet. Change 223, 104091. https://doi.org/10.1016/j.gloplacha.2023.104091
- 2. Aparna, S.G., McCreary, J.P., Shankar, D., Vinayachandran, P.N., 2012. Signatures of Indian Ocean Dipole and El Niño–Southern Oscillation events in sea level variations in the Bay of Bengal. J. Geophys. Res. Oceans 117, 2012JC008055. https://doi.org/10.1029/2012JC008055
- 3. Arakawa, A., Lamb, V.R., 1977. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, [in:] Methods in Computational Physics: Advances in Research and Applications. Elsevier, 173-265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4
- 4. Ashok, K., Guan, Z., Saji, N.H., Yamagata, T., 2004. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim. 17, 3141-3155. https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2
- 5. Behera, S.K., Krishnan, R., Yamagata, T., 1999. Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett. 26, 3001-3004. https://doi.org/10.1029/1999GL010434
- 6. Behera, S.K., Ratnam, J.V., 2018. Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD. Sci. Rep. 8, 123. https://doi.org/10.1038/s41598-017-18396-6
- 7. Carton, J.A., Chepurin, G.A., Chen, L., 2018. SODA3: A New Ocean Climate Reanalysis. J. Clim. 31, 6967-6983. https://doi.org/10.1175/JCLI-D-18-0149.1
- 8. Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., Pizarro, O., 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Oceans 116, 2011JC007134. https://doi.org/10.1029/2011JC007134
- 9. Chanda, A., Das, S., Mukhopadhyay, A., Ghosh, A., Akhand, A., Ghosh, P., Ghosh, T., Mitra, D., Hazra, S., 2018. Sea surface temperature and rainfall anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sens. Appl. Soc. Environ. 12, 10-22. https://doi.org/10.1016/j.rsase.2018.08.001
- 10. Chassignet, E.P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D.B., Ma, C.-C., Mehra, A., Paiva, A.M., Sirkes, Z., 2000. DAMÉE-NAB: the base experiments. Dynam. Atmos. Oceans 32, 155-183. https://doi.org/10.1016/S0377-0265(00)00046-4
- 11. Chatterjee, A., Shankar, D., Shenoi, S.S.C., Reddy, G.V., Michael, G.S., Ravichandran, M., Gopalkrishna, V.V., Rama Rao, E.P., Udaya Bhaskar, T.V.S., Sanjeevan, V.N., 2012. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth Syst. Sci. 121, 559-593. https://doi.org/10.1007/s12040-012-0191-9
- 12. Chelton, D.B., Schlax, M.G., Samelson, R.M., 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167-216. https://doi.org/10.1016/j.pocean.2011.01.002
- 13. Chelton, D.B., Schlax, M.G., Samelson, R.M., De Szoeke, R.A., 2007. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, 2007GL030812. https://doi.org/10.1029/2007GL030812
- 14. Chen, G., Han, G., 2019. Contrasting Short? Lived With Long? Lived Mesoscale Eddies in the Global Ocean. J. Geophys. Res. Oceans 124, 3149-3167. https://doi.org/10.1029/2019JC014983
- 15. Chen, G., Li, Y., Xie, Q., Wang, D., 2018. Origins of Eddy Kinetic Energy in the Bay of Bengal. J. Geophys. Res. Oceans 123, 2097-2115. https://doi.org/10.1002/2017JC013455
- 16. Chen, X., Qiu, B., Chen, S., Qi, Y., Du, Y., 2015. Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific. J. Geophys. Res. Oceans 120, 6351-6362. https://doi.org/10.1002/2015JC011054
- 17. Copernicus Climate Change Service, 2023. Complete ERA5 global atmospheric reanalyis. https://doi.org/10.24381/CDS.143582CF
- 18. Dai, A., 2017. Dai and Trenberth Global River Flow and Continental Discharge Dataset. https://doi.org/10.5065/D6V69H1T
- 19. Dandapat, S., Chakraborty, A., Kuttippurath, J., 2018. Interannual variability and characteristics of the East India Coastal Current associated with Indian Ocean Dipole events using a high resolution regional ocean model. Ocean Dynam. 68, 1321-1334. https://doi.org/10.1007/s10236-018-1201-5
- 20. Eigenheer, A., Quadfasel, D., 2000. Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. J. Geophys. Res. Oceans 105, 3243-3252. https://doi.org/10.1029/1999JC900291
- 21. Epps, B., 2017. Review of Vortex Identification Methods. 55th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2017-0989
- 22. Guo, H., Zhan, C., Ning, L., Li, Z., Hu, S., 2022. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the runoff. Theor. Appl. Climatol. 149, 1451-1470. https://doi.org/10.1007/s00704-022-04118-0
- 23. Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 227, 3595-3624. https://doi.org/10.1016/j.jcp.2007.06.016
- 24. Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynam. Atmos. Oceans 32, 239-281. https://doi.org/10.1016/S0377-0265(00)00049-X
- 25. Halo, I., 2012. The Mozambique Channel eddies: Characteristics and mechanisms of formation. Univ. Cape Town.
- 26. Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., Ullgren, J.E., 2014. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models. Deep Sea Res. Pt. II 100, 38-53. https://doi.org/10.1016/j.dsr2.2013.10.015
- 27. Hormann, V., Centurioni, L.R., Gordon, A.L., 2019. Freshwater export pathways from the Bay of Bengal. Deep Sea Res. Pt. II 168, 104645. https://doi.org/10.1016/j.dsr2.2019.104645
- 28. Isern-Fontanet, J., Garcı́a-Ladona, E., Font, J., 2006. Vortices of the Mediterranean Sea: An Altimetric Perspective. J. Phys. Oceanogr. 36, 87-103. https://doi.org/10.1175/JPO2826.1
- 29. Jensen, T., Wijesekera, H., Nyadjro, E., Thoppil, P., Shriver, J., Sandeep, K.K., Pant, V., 2016. Modeling Salinity Exchanges Between the Equatorial Indian Ocean and the Bay of Bengal. Oceanography 29, 92-101. https://doi.org/10.5670/oceanog.2016.42
- 30. Ji, J., Ma, J., Dong, C., Chiang, J., Chen, D., 2020. Regional Dependence of Atmospheric Responses to Oceanic Eddies in the North Pacific Ocean. Remote Sens. 12, 1161. https://doi.org/10.3390/rs12071161
- 31. Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363-403. https://doi.org/10.1029/94RG01872
- 32. Lian, Z., Sun, B., Wei, Z., Wang, Y., Wang, X., 2019. Comparison of Eight Detection Algorithms for the Quantification and Characterization of Mesoscale Eddies in the South China Sea. J. Atmospheric Ocean. Technol. 36, 1361-1380. https://doi.org/10.1175/JTECH-D-18-0201.1
- 33. Lin, P., Liu, H., Ma, J., Li, Y., 2019. Ocean mesoscale structure–induced air–sea interaction in a high–resolution coupled model. Atmospheric Ocean Sci. Lett. 12, 98-106. https://doi.org/10.1080/16742834.2019.1569454
- 34. Marchesiello, P., McWilliams, J.C., Shchepetkin, A., 2003. Equilibrium Structure and Dynamics of the California Current System. J. Phys. Oceanogr. 33, 753-783. https://doi.org/10.1175/1520-0485(2003)33<753ESADOT>2.0.CO;2
- 35. Nigam, T., Pant, V., Prakash, K.R., 2018. Impact of Indian ocean dipole on the coastal upwelling features off the southwest coast of India. Ocean Dynam. 68, 663-676. https://doi.org/10.1007/s10236-018-1152-x
- 36. Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 17, 445-454. https://doi.org/10.1016/0011-7471(70)90059-8
- 37. Penven, P., Echevin, V., Pasapera, J., Colas, F., Tam, J., 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res. Oceans 110, 2005JC002945. https://doi.org/10.1029/2005JC002945
- 38. Rao, R.R., Girish Kumar, M.S., Ravichandran, M., Rao, A.R., Gopalakrishna, V.V., Thadathil, P., 2010. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993-2006. Deep Sea Res. Part Oceanogr. Res. Pap. 57, 1-13. https://doi.org/10.1016/j.dsr.2009.10.008
- 39. Sadhukhan, B., Chakraborty, A., 2023. Role of local and remote forcing on the decadal variability of Mixed Layer Depth in the Bay of Bengal. Dynam. Atmospheres Oceans 102, 101349. https://doi.org/10.1016/j.dynatmoce.2022.101349
- 40. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363. https://doi.org/10.1038/43854
- 41. Sandeep, K.K., Pant, V., 2018. Evaluation of Interannual Simulations and Indian Ocean Dipole Events During 2000-2014 from a Basin Scale General Circulation Model. Pure Appl. Geophys. 175, 4579-4603. https://doi.org/10.1007/s00024-018-1915-9
- 42. Shankar, D., Shetye, S.R., 1999. Are interdecadal sea level changes along the Indian coast influenced by variability of monsoon rainfall? J. Geophys. Res. Oceans 104, 26031-26042. https://doi.org/10.1029/1999JC900218
- 43. Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63-120. https://doi.org/10.1016/S0079-6611(02)00024-1
- 44. Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split–explicit, free–surface, topography–following-coordinate oceanic model. Ocean Model. 9, 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
- 45. Shchepetkin, A.F., McWilliams, J.C., 2003. A method for computing horizontal pressure–gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. Oceans 108, 2001JC001047. https://doi.org/10.1029/2001JC001047
- 46. Shchepetkin, A.F., McWilliams, J.C., 1998. Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation. Mon. Weather Rev. 126, 1541-1580. https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2
- 47. Sherin, C.K., Sarma, V.V.S.S., Rao, G.D., Viswanadham, R., Omand, M.M., Murty, V.S.N., 2018. New to total primary production ratio (f-ratio) in the Bay of Bengal using isotopic composition of suspended particulate organic carbon and nitrogen. Deep Sea Res. Oceanogr. Res. Pap. 139, 43-54. https://doi.org/10.1016/j.dsr.2018.06.002
- 48. Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Sundar, D., Michael, G.S., Nampoothiri, G., 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res. Oceans 98, 945-954. https://doi.org/10.1029/92JC02070
- 49. Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- 50. Song, Y., Haidvogel, D., 1994. A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System. J. Comput. Phys. 115, 228-244. https://doi.org/10.1006/jcph.1994.1189
- 51. Thompson, B., Gnanaseelan, C., Salvekar, P.S., 2006. Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. J. Mar. Res. 64, 853-880. https://doi.org/10.1357/002224006779698350
- 52. Varna, M., Jithin, A.K., Francis, P.A., 2023. Characteristics and dynamics of mesoscale eddies in the eastern Arabian Sea. Deep Sea Res. Pt. II 207, 105218. https://doi.org/10.1016/j.dsr2.2022.105218
- 53. Weiss, J., 1991. The dynamics of enstrophy transfer in twodimensional hydrodynamics? Phys. Nonlinear Phenom. 48, 273-294. https://doi.org/10.1016/0167-2789(91)90088-Q
- 54. Wunsch, C., 2020. Is the Ocean Speeding Up? Ocean Surface Energy Trends. J. Phys. Oceanogr. 50, 3205-3217. https://doi.org/10.1175/JPO-D-20-0082.1
- 55. Yadidya, B., Rao, A.D., 2022. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean Dipole. Sci. Rep. 12, 11104. https://doi.org/10.1038/s41598-022-15301-8
- 56. Yu, L., O’Brien, J.J., Yang, J., 1991. On the remote forcing of the circulation in the Bay of Bengal. J. Geophys. Res. Oceans 96, 20449-20454. https://doi.org/10.1029/91JC02424
- 57. Zeytounian, R., 1990. The Boussinesq Approximation, in: Asymptotic Modeling of Atmospheric Flows. Springer, Berlin, Heidelberg, 142-176. https://doi.org/10.1007/978-3-642-73800-5_8
- 58. Zhao, W.-W., Wang, J.-H., Wan, D.-C., 2020. Vortex identification methods in marine hydrodynamics. J. Hydrodynamics 32, 286-295. https://doi.org/10.1007/s42241-020-0022-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d5fe090-ab5a-43ef-a711-444e3ed3c819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.