PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary computational and experimental design studies of the ISHTAR thermostatic rig for the high-temperature reactors materials irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The Ir radiation System for High-Temperature Reactors (ISHTAR) thermostatic rig will be used to irradiate advanced core material samples in conditions corresponding to those prevailing in the high-temperature reactors (HTRs): these conditions include a stable temperature extending up to 1000°C in the helium atmosphere. Computational and experimental studies concerning the design have been conducted, proving the possibility of these conditions’ fulfi llment inside the rig while maintaining the safety limits for MARIA research reactor. The outcome is the thermostatic rig design that will be implemented in the MARIA reactor. Appropriate irradiation temperature will be achieved by a combination of electric heating with the control system, gamma heating, and a helium insulation gap with precisely designed thickness. The ISHTAR rig will be placed inside the vertical irradiation channel, which is located in the reactor pool. The device is being developed from scratch at the Nuclear Facilities Operation Department of the National Centre for Nuclear Research as a part of the GOSPOSTRATEG programme
Słowa kluczowe
Czasopismo
Rocznik
Strony
127--132
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
autor
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
Bibliografia
  • 1.Prokopowicz, R., & Pytel, K. (2016). Determination of nuclear fuel burn-up axial profile by neutron emission measurement. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip., 838, 18–23. DOI: 10.1016/j.nima.2016.09.021.
  • 2. The Council of Ministers. (2017). Strategia na rzecz Odpowiedzialnego Rozwoju do roku 2020 (z perspektywą do 2030 r.) (Strategy for Responsible Development for the period up to 2020 including the perspective up to 2030). Monitor Polski, 2017, item 260.
  • 3. Ministry of Climate. (2020). Program polskiej energetyki jądrowej – projekt (Polish Nuclear Power Programme – draft). (2020). Available from https://bip.mos.gov.pl/fileadmin/user_upload/bip/prawo/inne_projekty/PPEJ/MK_Energia_jadrowa_200806_pop_1.pdf
  • 4. Sobkowicz, P. (2019, August 24). Scientific projects for HTR in Poland. International Framework for Nuclear Energy Cooperation. Warszawa, Poland: Infrastructure Development Working Group Workshop. Nuclear Energy Beyond Electricity. Available from https://www.ifnec.org/ifnec/upload/docs/application/pdf/2019-09/2-2._scientifi c_project_for_htr_in_poland.pdf
  • 5. Kim , B. -G., Sohn, J. -M., & Choo, K. -N. (2010).Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO. Nucl. Eng. Technol., 42(2), 203–210. DOI: 10.5516/NET.2010.42.2.203.
  • 6. Varivtsev, A. V., Zhemkov, I. Yu., Boev, A. V., Ishunina, O. V., Naboyshchikov, Yu. V., Poglyad, N. S., & Sharonova, M. G. (2016). Computational and experimental study of an irradiation rig with a fuel heater for the BO R-60 reactor. Nucl. Energy Technol., 2(2), 126–131. DOI: 10.1016/j.nucet.2016.05.010.
  • 7. D’Agata, E., Döderlein, C., Tsige-Tamirat, H., Oettingen, M., & Mutnuru, R. (2017). The neutronics scheme adopted for the HELIOS irradiation experiment in the High Flux Reactor Petten. Ann.Nucl. Energy, 101, 312–321. DOI: 10.1016/j.anucene.2016.11.017.
  • 8. Bamber, R., Colin, C., Bignan, G., Edwards, B., Gonnier, C., & Waldon, C. (2017). Conceptual design of test devices for the JHR tailored to the needs of the nuclear fusion community. Fusion Eng. Des., 122,113–123. DOI: 10.1016/j.fusengdes.2017.09.003.
  • 9. Kurpaska, L., Frelek-Kozak, M., Wilczopolska, M., Bonicki, W., Diduszko, R., Zaborowska, A., Wyszkowska, E., Clozel, M., Kosinska, A., Cieslik, I., Duchna, M., Jozwik, I., Chmurzynski, W., Olszewski, G., Zajac, B., & Jagielski, J. (2020). Structural and mechanical properties of different types of graphite used in nuclear applications. J. Mol. Struct., 1217, 128370.DOI: 10.1016/j.molstruc.2020.128370.
  • 10. Żyszkowski, W. (1980). Syntetyczna ocena programu budowy sond w Z-dzie IX oraz kierunek dalszej jego realizacji (Synthetic evaluation of the rigs construction programme in Department IX and the direction of its further implementation). Świerk: Instytut Badań Jądrowych. (0-163/IX/80).
  • 11. Çengel,Y. A. (1998). Heat transfer: A practical approach. Boston, Mass: WBC McGraw-Hill.
  • 12. Gogół, W . (1991). Wymiana ciepła: Tablice i wykresy (Heat transfer: Tables and graphs). Warszawa: Wydawnictwa Politechniki Warszawskiej.
  • 13. Hunnewell, T. S., Walton, K. L., Sharma, S., Ghosh, T. K., Tompson, R. V., Viswanath, D. S., & Loyalka, S. K. (2017). Total hemispherical emissivity of SS 316L with simulated very high temperature reactor surface conditions. Nucl. Technol., 198(3), 293–305. DOI: 10.1080/00295450.2017.1311120.
  • 14. Nedoseka, A. A. (2012). Fundamentals of evaluation and diagnostics of welded structures. Oxford: Woodhead Publishing Ltd.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d5d62a2-ed6b-488e-ba57-85f870bc3ad9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.