Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Unmanned Aerial Vehicles (UAVs) are being actively used in various fields including agriculture, surveillance, scientific research, and delivery. Despite their widespread use, UAVs face significant cybersecurity challenges due to their vulnerabilities as cyber-physical systems. UAVs are vulnerable to cyberattacks, which target cyber or physical elements, the interface between them, wireless connections, or a combination of several components. Given the complexity of securing these systems, this paper provides a comprehensive survey of the current state of UAV cybersecurity. Moreover, different cybersecurity issues of UAVs are analyzed, various features, and functions of UAVs are considered. UAV attack classification scheme is constructed and attacks on various components are accounted for. Also, countermeasures against cyberattacks that target UAVs are discussed. Finally, UAV cyber security datasets for research purposes are indicated, and the remaining open issues in this field are identified.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
405--439
Opis fizyczny
Bibliogr. 93 poz., rys., tab.
Twórcy
autor
- Institute of Information Technology, 9A, B. Vahabzade Street, Baku AZ1141, Azerbaijan
autor
- Institute of Information Technology, 9A, B. Vahabzade Street, Baku AZ1141, Azerbaijan
Bibliografia
- Abbaspour, A. and Yen, K. K. (2016) Detection of Fault Data Injection Attack on UAV Using Adaptive Neural Network. Procedia Computer Science. 95, 193−200. //doi.org/10.1016/j.procs.2016.09.312
- Abdullayeva, F. and Ibrahimov, R. (2022) Neural network models for detection of unmanned aerial vehicles based on spectrogram analysis. Problems of Information Technology. 13(2), 16–23. //doi.org/10.25045/jpit.v13.i2.02
- Abdullayeva, F. and Valikhanli, O. (2022) Development of a method for detecting GPS spoofing attacks on unmanned aerial vehicles. Problems of Information Technology, 13(1), 3–8. //doi.org/10.25045/jpit.v13.i1.01
- Aggarwal, S., Shojafar, M., Kumar, N. and Conti, M. (2019) A new secure data dissemination model in Internet of drones. Proc. of the IEEE International Conference on Communications. IEEE, 1−6. //doi.org/10.1109/ICC.2019.8761372
- Alladi, T., Chamola, V., Sahu, N. and Guizani, M. (2020) Applications of blockchain in unmanned aerial vehicles: A review. Vehicular Communications. 23, 100249. //doi.org/10.1016/j.vehcom.2020.100249
- Almulhem, A. (2020) Threat modeling of a multi-UAV system. Transportation Research Part A: Policy and Practice. 142, 290−295. //doi.org/10.1016/j.tra.2020.11.004
- Altawy, R. and Youssef, A. M. (2016) Security, Privacy, and Safety Aspects of Civilian Drones: A Survey. ACM Transactions on Cyber-Physical Systems. 1(2), 1−25. //doi.org/10.1145/3001836
- Bada, M., Boubiche, D., Lagraa, N., Kerrache, C., Imran, M. and Shoaib, M. (2021) A policy-based solution for the detection of colluding GPS-Spoofing attacks in FANETs. Transportation Research Part A: Policy And Practice. 149, 300-318. //doi.org/10.1016/j.tra.2021.04.022
- Balamurugan, G., Valarmathi, J. and Naidu, V. P. S. (2016) Survey on UAV navigation in GPS denied environments. International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 198−204. //doi.org/10.1109/SCOPES.2016.7955787
- Barka, E., Kerrache, C. A., Benkraouda, H., Shuaib, K., Ahmad, F. and Kurugollu, F. (2019) Towards a trusted unmanned aerial system using blockchain for the protection of critical infrastructure. Transactions on Emerging Telecommunications Technologies. 33(8), pp. 1−10. //doi.org/10.1002/ett.3706
- Bayraktar, S. and Feron, E. (2009) Experiments with small unmanned helicopter nose-up landings. Journal of Guidance, Control, and Dynamics: a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control. 32(1), 332–337. //doi.org/10.2514/1.36470
- Bera, B., Das, A. K. and Sutrala, A. K. (2021) Private blockchain-based access control mechanism for unauthorized UAV detection and mitigation in Internet of Drones environment. Computer Communications. 166, 91−109. //doi.org/10.1016/j.comcom.2020.12.005
- Birnbaum, Z., Dolgikh, A., Skormin, V., O’Brien, E. and Muller, D. (2014) Unmanned Aerial Vehicle Security Using Recursive Parameter Estimation. Proc. of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 692−702. //doi.org/10.1109/ICUAS.2014.6842314
- Brik, B., Ksentini, A. and Bouaziz, M. (2016) Federated Learning for UAVs-EnabledWireless Networks: Use Cases, Challenges, and Open Problems. IEEE Access. 8, 1−10. //doi.org/10.1109/ACCESS.2020.2981430
- Ch, R., Srivastava, G., Reddy Gadekallu, T., Maddikunta, P. K. R. and Bhattacharya, S. (2020) Security and privacy of UAV data using blockchain technology. Journal of Information Security and Applications. 55, 102670. //doi.org/10.1016/j.jisa.2020.102670
- Chamola, V., Kotesh, P., Agarwal, A., Naren, N., Gupta, N. and Guizani, M. (2021) A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Networks. 111, 102324. //doi.org/10.1016/j.adhoc.2020.102324
- Chen, J., Feng, Z., Wen, J., Liu, B. and Sha, L. (2019) A Containerbased DoS Attack-Resilient Control Framework for Real-Time UAV Systems. Proc. of the IEEE Europe Conference & Exhibition (DATE) on Design, Automation & Test. IEEE, 1216−1221. //doi.org/10.23919/DATE. 2019.8714888
- Chriki, A., Touati, H., Snoussi, H. and Kamoun, F. (2019) FANET: Communication, mobility models and security issues. Computer Networks. 163, 106877. //doi.org/10.1016/j.comnet.2019.106877
- Condomines, J., Zhang, R. and Larrieu, N. (2019) Network intrusion detection system for UAV ad-hoc communication: From methodology design to real test validation. Ad Hoc Networks. 90, 101759. //doi.org/10.1016/j.adhoc.2018.09.004
- Constantinides, C. and Parkinson, P. (2008) Security challenges in UAV development. Proc. of the IEEE/AIAA Digital Avionics Systems Conference. IEEE, 1−8. //doi.org/10.1109/DASC.2008.4702757
- Cyber Security Research Alliance and NIST (2013) Designed-in CyberSecurity for Cyber-Physical Systems. Workshop Report. NIST.
- Dai, X., Mao Y., Huang T., Qin N., Huang D. and Li Y. (2020) Automatic obstacle avoidance of quadrotor UAV via CNN-based learning. Neurocomputing. 402, 346–358. //doi.org/10.1016/j.neucom.2020.04.020
- Dang, Y., Benzaid, C., Taleb, T., Yang, B. and Shen, Y. (2022) Transfer Learning based GPS Spoofing Detection for Cellular-Connected UAVs. International Wireless Communications And Mobile Computing (IWCMC). IEEE. //doi.org/10.1109/iwcmc55113.2022.9824124
- Dursun, M. and C,uhadar, ˙I. (2018) Risk based multi criteria decision making for secure image transfer between unmanned air vehicle and ground control station. Reliability Engineering & System Safety. 178, 31−39. //doi.org/10.1016/j.ress.2018.05.011
- Feng, Z., Guan, N., Lv, M., Liu, W., Deng, Q., Liu, X. and Yi, W. (2020) Efficient drone hijacking detection using Two-Step GA-XGBoost. Journal of Systems Architecture. 103, 1−30. //doi.org/10.1016/j.sysarc.2019.101694
- Fotohi, R. (2020) Securing of Unmanned Aerial Systems (UAS) against security threats using human immune system. Reliability Engineering & System Safety. 193, 106675. //doi.org/10.1016/j.ress.2019.106675
- Gharibi, M., Boutaba, R. and Waslander, S. L. (2016) Internet of Drones. IEEE Access. 4, 1148− 1162. //doi.org/10.1109/ACCESS.2016.2537208
- Gope, P., Millwood, O. and Saxena, N. (2021) A provably secure authentication scheme for RFID-enabled UAV applications. Computer Communications. 2021, 166, 19−25. //doi.org/10.1016/j.comcom.2020.11.009
- Greco, C., Pace, P., Basagni, S. and Fortino, G. (2021) Jamming detection at the edge of drone networks using Multi-layer Perceptrons and Decision Trees. Applied Soft Computing. 111, 107806. //doi.org/10.1016/j.asoc.2021.107806
- Gu, Y., Yu, X., Guo, K., Qiaoa, J. and Guo, L. (2021) Detection, estimation, and compensation of false data injection attack for UAVs. Information Sciences. 546, 723−741. //doi.org/10.1016/j.ins.2020.08.055
- Haider, M., Ahmed, I. and Rawat, D. B. (2022) Cyber Threats and Cybersecurity Reassessed in UAV-assisted Cyber Physical Systems. Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE. 222-227. //doi.org/10.1109/icufn55119.2022.9829584
- Hartmann, K. and Steup, C. (2013) The Vulnerability of UAVs to Cyber Attacks - An Approach to the Risk Assessment. Proc. of the 5th IEEE International Conference on Cyber Conflict. IEEE, 1−23.
- Hassler, S. H., Mughal, U. M. and Ismail, M. I. (2023) Cyber-Physical Dataset for UAVs Under Normal Operations and Cyber-Attacks [Dataset]. IEEE DataPort. Available at: https://ieee-dataport.org/documents/cyberphysical-dataset-uavs-under-normal-operations-and-cyber-attacks (Accessed: August 28, 2024)
- He, D., Chan, S. and Guizani, M. (2017) Communication security of unmanned aerial vehicles. IEEE wireless communications. 24(4), 134–139. //doi.org/10.1109/mwc.2016.1600073wc
- He, J., Gong, X., Cui, Y. and Huang, T. (2021) Resilient Path Planning of UAVs against Covert Attacks on UWB Sensors. Robotics. 1−9. //doi.org/10.48550/arXiv.2102.11696
- Hoang, T. M., Nguyen, N. M. and Duong, T. Q. (2020) Detection of Eavesdropping Attack in UAV-aided Wireless Systems: Unsupervised Learning with One-Class SVM and K-means Clustering. IEEE Wireless Communications Letters. 9(2), 139−142. //doi.org/10.1109/LWC.2019. 2945022
- Hossein Motlagh, N., Taleb, T. and Arouk, O. (2016) Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE internet of things journal. 3(6), 899–922. //doi.org/10.1109/jiot.2016.2612119
- Huang, K. and Wang, H. (2018) Combating the control signal spoofing attack in UAV systems. IEEE Transactions on Vehicular Technology. 67(8), 7769−7773. //doi.org/10.1109/TVT.2018.2830345
- Hussain, S., Kamal, A., Ahmad, S., Rasool, G. and Iqbal, S. (2014) Threat modeling methodologies: A survey. Sci. Int. 26(4), 1607−1609.
- Jain, D. K., Li, Y., Er, M. J., Xin, Q., Gupta, D. and Shankar, K. (2022) Enabling Unmanned Aerial Vehicle Borne Secure Communication with Classification Framework for Industry 5.0. IEEE Transactions on Industrial Informatics. 18(8), 5477−5484. //doi.org/10.1109/tii.2021.3125732.
- Jamil, S. (2020) Malicious UAVs Detection [Dataset]. Kaggle. Available at: https://www.kaggle.com/datasets/sonain/malicious-uavs-detection (Accessed: August 28, 2024)
- Javaid, A. Y., Sun, W., Devabhaktuni, V. K. and Alam, M. (2012) Cyber security threat analysis and modeling of an unmanned aerial vehicle system. Proc. of the IEEE Conference on Technologies for Homeland Security. IEEE. 585−590. //doi.org/10.1109/THS.2012.6459914
- Johnson, P., Lagerstr¨om, R., Ekstedt, M. and Franke, U. (2018) Can the common vulnerability scoring system be trusted? A Bayesian analysis. IEEE Transactions on Dependable Secure Computing. 15, 1002−1015. //doi.org/10.1109/TDSC.2016.2644614
- Keipour, A., Mousaei, M. and Schere, S. (2020) AirLab Failure and Anomaly (ALFA) Dataset [Dataset]. TheAirLab. Available at: https://theairlab.org/alfa-dataset/ (Accessed: August 28, 2024)
- Khaitan, S. K. and McCalley, J. D. (2015) Design Techniques and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal. 9(2), 350-365. //doi.org/10.1109/JSYST.2014.2322503
- Khan, R., McLaughlin, K., Laverty, D. and Sezer, S. (2017) STRIDEbased threat modeling for cyber-physical systems. Proc. of the IEEE PES Innovative Smart Grid Technologies Conference Europe. IEEE. //doi.org/10.1109/ISGTEurope.2017.8260283
- Kordy, B., Pi`etre-Cambac´ed`es, L. and Schweitzer, P. (2014) DAGbased attack and defense modeling: Don’t miss the forest for the attack trees. Computer Science Review. 13-14, 1−38. //doi.org/10.1016/j.cosrev.2014.07.001
- Kuzmin, A. and Znak, E. (2018) Blockchain-base structures for a secure and operate net-work of semi-autonomous unmanned aerial vehicles. Proc. Of the IEEE International Conference on Service Operations and Logistics, and Informatics. IEEE, 32−37. //doi.org/10.1109/SOLI.2018.8476785
- Laricchia, F. (2023) Drone market size worldwide in selected years from 2021 to 2030. Statista. Available at: https://www.statista.com/statistics/1234521/worldwide-drone-market/ (Accessed: November 17, 2023)
- Lei, Y., Zeng, L., Li, Y., Wang, M. and Qin, H. (2021) A Lightweight Authentication Protocol for UAV Networks Based on Security and Computational Resource Optimization. IEEE Access. 9, 53769-53785. //doi.org/10.1109/access.2021.3070683
- Liu, Y. C., Bianchin, G. and Pasqualetti, F. (2020) Secure trajectory planning against undetectable spoofing attacks. Automatica. 112, 108655. //doi.org/10.1016/j.automatica.2019.108655
- Lund, M. S., Solhaug, B. and Stolen, K. (2011) Model-Driven Risk Analysis: the CORAS Approach. Springer, Berlin-Heidelberg.
- Lv, Z., Qiao, L., Hossain, M. and Choi, B. (2021) Analysis of Using Blockchain to Protect the Privacy of Drone Big Data. IEEE Network. 35(1), 44-49. //doi.org/10.1109/mnet.011.2000154
- Ly, B. and Ly, R. (2021) Cybersecurity in unmanned aerial vehicles UAVs. Journal of Cyber Security Technology. 5(2), 120−137. //doi.org/10.1080/23742917.2020.1846307
- Madan, B. B., Banik, M. and Bein, D. (2019) Securing unmanned autonomous systems from cyber threats. The Journal of Defense Modeling and Simulation Applications Methodology Technology. 16(2), 119–136. //doi.org/10.1177/1548512916628335
- Mairaj, A., Majumder, S. and Javaid, A.Y. (2019) Game Theoretic Strategies for an Unmanned Aerial Vehicle Network Host Under DDoS Attack. Proc. of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 1-9. //doi.org/10.1109/ICUAS.2019.8797939
- Manfredini, E. G., Motella, B. and Dovis, F. (2015) Signal Quality Monitoring for Discrimination between Spoofing and Environmental Effects, Based on Multidimensional Ratio Metric Tests. Proc. of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation. IOS, 3100−3106.
- Meurer, M., Konovaltsev, A., Appel, M. and Cuntz, M. (2016) Direction of-Arrival Assisted Sequential Spoofing Detection and Mitigation. Proc. of the International Technical Meeting of The Institute of Navigation. IOS, 181−192. //doi.org/10.33012/2016.13395
- Mo, Y. and Sinopoli, B. (2010) False data injection attacks in control systems. Proc. of the First Workshop on Secure Control Systems, ACM, 1−7.
- Moosbrugger, P., Rozier, K. Y. and Schumann, J. (2017) R2U2: monitoring and diagnosis of security threats for unmanned aerial systems. Formal Methods in System Design. 51, 31−61. //doi.org/10.1007/s10703-017-0275-x
- Naeem, F., Mohsin, M., Rauf, U. and Khan, L. A. (2021) Formal approach to thwart against drone discovery attacks: A taxonomy of novel 3D obfuscation mechanisms. Future Generation Computer Systems. 115, 374−386. //doi.org/10.1016/j.future.2020.09.001
- Nunez, J., Tran, V. and Katangur, A. (2019) Protecting the Unmanned Aerial Vehicle from Cyberattacks. Proc. of the International Conference on Security and Management. CSREA, 154−157.
- Ouiazzane, S., Addou, M. and Barramou, F. (2022) A Multiagent and Machine Learning Based Denial of Service Intrusion Detection System for Drone Networks. Geospatial Intelligence, Advances in Science, Technology & Innovation. Cham: Springer International Publishing, 51−65. //doi.org/10.1007/978-3-030-80458-9 5
- Pengtao, Z., Tao, W., Runhua, C., Zi, L. and Jiwei, X. (2022) UAV Swarm Resilience Assessment Considering Load Balancing. Frontiers in Physics. 10, 1−10. //doi.org/10.3389/fphy.2022.821321
- Petrík, M., Báča, T., Heřt, D., Vrba, M., Krajník, T. and Saska, M. (2020) A Robust UAV System for Operations in a Constrained Environment, IEEE Robotics and Automation Letters. 5(2), 2169−2176. //doi.org/10.1109/LRA.2020.2970980
- Półka, M., Ptak, S. and Kuziora, L. (2017) The use of UAV’s for search and rescue operations. Procedia engineering. 192, 748–752. //doi.org/10.1016/j.proeng.2017.06.129.
- Psiaki, M. L. and Humphreys, T. E. (2016) GNSS Spoofing and Detection. Proceedings of the IEEE. 104(6), 1258-1270. //doi.org/10.1109/JPROC.2016.2526658
- Pyzynski, M. and Balcerzak, T. (2021) Cybersecurity of the Unmanned Aircraft System (UAS). Journal of Intelligent & Robotic Systems. 102, 1−13. //doi.org/10.1007/s10846-021-01399-x
- Rodday, N. M., Schmidt, R. O. and Pras, A. (2016) Exploring Security Vulnerabilities of Unmanned Aerial Vehicles. IEEE/IFIP Network Operations and Management Symposium. IEEE, 993−994. //doi.org/10.1109/NOMS.2016.7502939
- RT (2013) SkyJack: Hacker-drone that can wirelessly hijack & control other drones. RT International. Available at: http://rt.com/news/hackerdrone-aircraft-parrot-704/ (Accessed: November 21, 2022)
- Safavat, S. and Rawat, D.B. (2021) Securing Unmanned Aerial Vehicular Networks Using Modified Elliptic Curve Cryptography. Proc. Of the IEEE Military Communications Conference (MILCOM). IEEE, 1-7. //doi.org/10.1109/MILCOM52596.2021.9652982
- Salamh, F. E., Karabiyik, U., Rogers, M. and Al-Hazemi, F. (2019) Drone Disrupted Denial of Service Attack (3DOS): Towards an Incident Response and Forensic Analysis of Remotely Piloted Aerial Systems (RPASs). Proc. IEEE 15th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE, 704−710. //doi.org/10.1109/IWCMC.2019.8766538
- Shafique, A., Mehmood, A. and Elhadef, M. (2021) Survey of Security Protocols and Vulnerabilities in Unmanned Aerial Vehicles. IEEE Access. 9, 46927-46948. //doi.org/10.1109/access.2021.3066778
- Sharifi-Tehrani, O., Sabahi, M. and Danaee, M. (2021) GNSS jamming detection of UAV ground control station using random matrix theory. ICT Express. 7(2), 239-243. //doi.org/10.1016/j.icte.2020.10.001
- Shen, H., Zong, Q., Lu, H., Zhang, X., Tian, B. and He, L. (2022) A distributed approach for lidar-based relative state estimation of multi-UAV in GPS-denied environments. Chinese Journal of Aeronautics. 35(1), 59−69. //doi.org/10.1016/j.cja.2021.04.021
- Shepard, D. P., Bhatti, J. A., Humphreys, T. E. and Fansler, A. A. (2012) Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS Spoofing Attacks. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), 3591-3605.
- Shevchenko, N., Chick, T. A., O’Riordan, P., Scanlon, T. P. and Woody, C. (2018) Threat modeling: a summary of available methods. Software Engineering Institute, Carnegie Mellon University. 1-26.
- Singh, K. and Verma, A. K. (2018a) A trust model for effective cooperation in flying ad hoc networks using genetic algorithm. Proc. of the International Conference on Communication and Signal Processing. IEEE. 491−495. //doi.org/10.1109/ICCSP.2018.8524558
- Singh, K. and Verma, A. K. (2018b) FCTM: A novel fuzzy classification trust model for enhancing reliability in flying ad hoc networks (FANETs). Ad Hoc and Sensor Wireless Networks. 40, 23-47.
- Singhal, A. and Banati, H. (2011) Fuzzy logic approach for threat prioritization in agile security framework using the DREAD model. International Journal of Computer Science Issues. 8(4), 182−190. //doi.org/10.48550/arXiv.1312.6836
- Son, Y., Shin, H., Kim, D., Park, Y., Noh, J., Choi, K., Choi, J. and Kim, Y. (2015) Rocking drones with intentional sound noise on gyroscopic sensors. Proc. of the 24th USENIX Conference on Security Symposium. 881−896.
- Street, M. (2021) Drone identification and tracking [Dataset]. Kaggle. Available at: https://www.kaggle.com/c/icmcis-drone-tracking/ (Accessed: August 28, 2024)
- Su, Y. (2021) A Trust Based Scheme to Protect 5G UAV Communication Networks. IEEE Open Journal Of The Computer Society. 2, 300-307. //doi.org/10.1109/ojcs.2021.3058001
- Swinney, C. J. and Woods, J. C. (2021) DroneDetect dataset: A radio frequency dataset of unmanned aerial system (UAS) signals for machine learning detection classification [Dataset]. IEEE DataPort. Available at: https://ieee-dataport.org/open-access/dronedetect-dataset-radio-frequencydataset-unmanned-aerial-system-uas-signals-machine (Accessed: August 28, 2024)
- Valikhanli, O. (2023) Analysis of various techniques for ensuring autonomous navigation of unmanned Aerial Vehicles. Problems of Information Technology. 14(1), 8–14. //doi.org/10.25045/jpit.v14.i1.02
- Vattapparamban, E., G¨uvenc,, I., Yurekli, A. I., Akkaya, K. and Ulua˘gac,, S. (2016) Drones for smart cities: Issues in cybersecurity, privacy, and public safety. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 216-221. //doi.org/10.1109/IWCMC.2016.7577060
- Whelan, J., Sangarapillai, T., Minawi, O., Almehmadi, A. and El-Khatib, K. (2020) UAV attack dataset [Dataset]. IEEE DataPort. Available at: https://ieee-dataport.org/open-access/uav-attack-dataset (Accessed: August 28, 2024)
- Wu, A. D., Johnson, E. N., Kaess, M., Dellaert, F. and Chowdhary, G. (2013) Autonomous flight in GPS-denied environments using monocular vision and inertial sensors. Journal of Aerospace Information Systems. 10(4), 172−186. //doi.org/10.2514/1.I010023
- Xiao, L., Lu, X., Xu, D., Tang, Y., Wang, L. and Zhuang, W. (2018) UAV relay in VANETs against smart jamming with reinforcement learning. IEEE Transactions on Vehicular Technology. 67(5), 4087−4097. //doi.org/10.1109/TVT.2018.2789466
- Yaacoub, J. P., Noura, H., Salman, O. and Chehab, A. (2020) Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things. 11, 100218. //doi.org/10.1016/j.iot.2020.100218
- Yağdereli, E., Gemci, C. and Aktas,, A. Z. (2015) A study on cybersecurity of autonomous and unmanned vehicles. The Journal of Defense Modeling and Simulation Applications Methodology Technology. 12(4), 369–381. //doi.org/10.1177/1548512915575803
- Zhao, L., Alipour-Fanid, A., Slawski, M. and Zeng, K. (2018) Unmanned Aerial Vehicle (UAV) Intrusion Detection Datasets [Dataset]. George Mason University. Available at: http://mason.gmu.edu/˜lzhao9/materials/data/UAV/ (Accessed: August 28, 2024)
- Zhao, L., Saif, M., Hawbani, A., Min, G., Peng, S. and Lin, N. (2021) A novel improved artificial bee colony and blockchain-based secure clustering routing scheme for FANET. China Communications. 18(7), 103-116. //doi.org/10.23919/jcc.2021.07.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d5cdd81-b699-48ad-9413-bb4b6c65d105