PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Early Evolutions of Mimas and Enceladus

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal history of Mimas and Enceladus is investigated from the beginning of accretion to 400 Myr. The numerical model of convection combined with the parameterized theory is used. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. The heat transfer processes are: conduction, solid state convection, and liquid state convection. We find that temperature of Mimas’ interior was significantly lower than that of Enceladus. If Mimas accreted 1.8 Myr after CAI then the internal melting and differentiation did not occur at all. Comparison of thermal models of Mimas and Enceladus indicates that conditions favorable for the start of tidal heating lasted for a short time (~107 yr) in Mimas and for ~108 yr in Enceladus. This could explain the Mimas-Enceladus paradox. In fact, in view of the chronology based on cometary impact rate, one cannot discard a possibility that also Mimas was for some time active and it has the interior differentiated on porous core and icy mantle.
Czasopismo
Rocznik
Strony
900--921
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Institute of Geophysics, University of Warsaw, Warszawa, Poland
autor
  • Institute of Geophysics, University of Warsaw, Warszawa, Poland
Bibliografia
  • [1] Abramov, O., and S.J. Mojzsis (2011), Abodes for life in carbonaceous asteroids? Icarus 213, 1, 273-279, DOI: 10.1016/j.icarus.2011.03.003.
  • [2] Bobojć, A., and A. Drożyner (2011), GOCE satellite orbit in the aspect of selected gravitational perturbations, Acta Geophys. 59, 2, 428-452, DOI: 10.2478/ s11600-010-0052-3.
  • [3] Charnoz, S., A. Morbidelli, L. Dones, and J. Salmon (2009), Did Saturn’s rings form during the Late Heavy Bombardment? Icarus 199, 2, 413-428, DOI: 10.1016/j.icarus.2008.10.019.
  • [4] Christensen, U. (1984), Convection with pressure- and temperature-dependent non- Newtonian rheology, Geophys. J. Int. 77, 2, 343-384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.
  • [5] Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of the Earth’s Evolution, PWN - Polish Scientific Publ., Warszawa, Elsevier, Amsterdam, 161-271.
  • [6] Czechowski, L. (2006a), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788-793, DOI: 10.1016/j.asr.2005.12.013.
  • [7] Czechowski, L. (2006b), Two models of parameterized convection for mediumsized icy satellites of Saturn, Acta Geophys. 54, 3, 280-302, DOI 10.2478/ s11600-006-0021-z.
  • [8] Czechowski, L. (2009), Uniform parameterized theory of convection in medium sized icy satellites of Saturn, Acta Geophys. 57, 2, 548-566, DOI: 10.2478/ s11600-008-0084-0.
  • [9] Czechowski, L. (2012), Thermal history and large scale differentiation of the Saturn’s satellite Rhea, Acta Geophys. 60, 4, 1192-1212, DOI: 10.2478/ s11600-012-0041-9.
  • [10] Czechowski, L. (2014), Some remarks on the early evolution of Enceladus, Planet. Space Sci. 104, 185-199, DOI: 10.1016/j.pss.2014.09.010.
  • [11] Czechowski, L., and K.J. Kossacki (2012), Thermal convection in the porous methane- soaked regolith in Titan: finite amplitude convection, Icarus 217, 1, 130-143, DOI: 10.1016/j.icarus.2011.10.006.
  • [12] Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141-166, DOI: 10.1017/S0022112093001740.
  • [13] Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non- Newtonian rheology, J. Geophys. Res. 104, B6, 12759-12777, DOI: 10.1029/1999JB900110.
  • [14] Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 63-78, DOI: 10.1007/978-94-011-5252-5_3.
  • [15] Ellsworth, K., and G. Schubert (1983), Saturn’s icy satellites: Thermal and structural models, Icarus 54, 3, 490-510, DOI: 10.1016/0019-1035(83)90242-7.
  • [16] Eluszkiewicz, J. (1990), Compaction and internal structure of Mimas, Icarus 84, 1, 215-225, DOI: 10.1016/0019-1035(90)90167-8.
  • [17] Essa, K.S. (2007), A simple formula for shape and depth determination from residual gravity anomalies, Acta Geophys. 55, 2, 182-190, DOI: 10.2478/ s11600-007-0003-9.
  • [18] Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 1, 232-245, DOI: 10.1016/ 0019-1035(91)90153-K.
  • [19] Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained Ice - I, Scripta. Mater. 37, 9, 1399-1406, DOI: 10.1016/S1359-6462(97) 00246-7.
  • [20] Grasset, O., and E.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary evolution, J. Geophys. Res. 103, B8, 18171-18181, DOI: 10.1029/98JB01492.
  • [21] Jaumann, R., R.N. Clark, F. Nimmo, A.R. Hendrix, B.J. Buratti, T. Denk, J.M. Moore, P.M. Schenk, S.J. Ostro, and R. Srama (2009), Icy satellites: Geological evolution and surface processes. In: M.K. Dougherty L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 637-681, DOI: 10.1007/978-1-4020-9217-6_20.
  • [22] Kriegel, H., S. Simon, J. Müller, U. Motschmann, J. Saur, K.-H. Glassmeier, and M.K. Dougherty (2009), The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data, Planet. Space Sci. 57, 14-15, 2113-2122, DOI: 10.1016/j.pss.2009.09.025.
  • [23] Leliwa-Kopystyński, J., and K.J. Kossacki (2000), Evolution of porosity in small icy bodies, Planet. Space Sci. 48, 7-8, 727-745, DOI: 10.1016/S0032-0633 (00)00038-6.
  • [24] Malamud, U., and D. Prialnik (2013), Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas, Icarus 225, 1, 763-774, DOI: 10.1016/j.icarus.2013.04.024.
  • [25] Matson, D.L., J.C. Castillo-Rogez, G. Schubert, C. Sotin, and W.B. McKinnon (2009), The thermal evolution and internal structure of Saturn’s mid-sized icy satellites. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 577-612, DOI: 10.1007/978-1-4020-9217-6_18.
  • [26] McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 525-550, DOI: 10.1007/978-94-011-5252-5_22.
  • [27] McKinnon, W.B., and A.C. Barr (2007), The Mimas paradox revisited plus crustal spreading on Enceladus? LPI Contrib. 1357, 91-92.
  • [28] Merk, R., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion, Icarus 159, 1, 183-191, DOI: 10.1006/icar.2002.6872.
  • [29] Meyer, J., and J. Wisdom (2008), Tidal evolution of Mimas, Enceladus, and Dione, Icarus 193, 1, 213-223, DOI: 10.1016/j.icarus.2007.09.008.
  • [30] Multhaup, K., and T. Spohn (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186, 2, 420-435, DOI: 10.1016/j.icarus.2006.09.001.
  • [31] Muro, G.D., and F. Nimmo (2011), Modeling the coupled thermal and orbital evolution of Mimas, LPI Contrib. 1608, 1560.
  • [32] Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 1-2, 129-155, DOI: 10.1023/A:1026187917994.
  • [33] Peale, S.J., P. Cassen, and R.T. Reynolds (1979), Melting of Io by tidal dissipation, Science 203, 4383, 892-894, DOI: 10.1126/science.203.4383.892.
  • [34] Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. In. 29, 3-4, 281-304, DOI: 10.1016/ 0031-9201(82)90018-8.
  • [35] Poirier, J.P., L. Boloh, and P. Chambon (1983), Tidal dissipation in small viscoelastic ice moons: The case of Enceladus, Icarus 55, 2, 218-230, DOI: 10.1016/ 0019-1035(83)90076-3.
  • [36] Robuchon, G., G. Choblet, G. Tobie, O. Čadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207, 2, 959-971, DOI: 10.1016/j.icarus.2009.12.002.
  • [37] Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 8, 267-269, DOI: 10.1088/0508-3443/3/8/306.
  • [38] Rothery, D.A. (1992), Satellites of the Outer Planets: Worlds in Their Own Right, Clarendon Press, Oxford, 208 pp.
  • [39] Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, 224-292.
  • [40] Schubert, G., D.L. Turcotte, and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge Univ. Press, Cambridge, 956 pp.
  • [41] Schubert, G., J.D. Anderson, B.J. Travis, and J. Palguta (2007), Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating, Icarus 188, 2, 345-355, DOI: 10.1016/j.icarus.2006.12.012.
  • [42] Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 9, 737-740, DOI: 10.1029/ GL005i009p00737.
  • [43] Spencer, J.R., A.C. Barr, L.W. Esposito, P. Helfenstein, A.P. Ingersoll, R. Jaumann, C.P. McKay, F. Nimmo, and J.H. Waite (2009), Enceladus: An active cryovolcanic satellite. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer Science+Business Media, Dordrecht, 683-724, DOI: 10.1007/978-1-4020-9217-6_21.
  • [44] Taubner, R.S., J.J. Leitner, M.G. Firneis, and R. Hirzenberger (2014), Including Cassini’s gravity measurements from the flybys E9, E12, E19 into interior structure models of Enceladus. In: Proc. European Planetary Science Congress, 7-12 September 2014, Cascais, Portugal, EPSC Abstracts, 2014-676.
  • [45] Thomas, P.C. (2010), Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission, Icarus 208, 1, 395-401, DOI: 10.1016/ j.icarus.2010.01.025.
  • [46] Turcotte, D.L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge University Press, Cambridge, 465 pp.
  • [47] Zahnle, K., P. Schenk, H. Levison, and L. Dones (2003), Cratering rates in the outer Solar System, Icarus 163, 2, 263-289, DOI: 10.1016/S0019-1035(03) 00048-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d507323-351e-4534-9e43-4e651278d106
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.