PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computing Simulation of the Generalized Duffing Oscillator Basedon EBM and MHPM

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with analytical approximate solutions, to the generalized Duffing oscillation. Modified Homotopy Perturbation Method (MHPM) and Energy Balance Method (EBM) are applied to solve nonlinear equation and consequently the relationship between the natural frequency and the initial amplitude is obtained in an analytical form. The general solution can be used to yield the relationship between amplitude and frequency in different strengths of nonlinearity. To verify the accuracy of the present approach, illustrative examples are provided and compared with exact solutions. The procedure yields rapid convergence with respect to the exact solution obtained by numerical integration.
Rocznik
Strony
595--604
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Chemical Engineering, Collaege of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, IRI
autor
  • Faculty of New Sciences and Technologies University of Tehran, Tehran, Iran
Bibliografia
  • [1] Gorji-Bandpy, M., Azimi, M. and Mosto, M.: Analytical Methods to a Generalized Duffing Oscillator, Australian Journal of Basic and Applied Science, 5, 11, 788–796, 2011.
  • [2] Fan, J.: He’s frequency amplitude formulation for the Duffing harmonic oscillator, Computers and Mathematics with Applications, 58, 2473–2476, 2009.
  • [3] Peng, Y. B. and Li, J.: Exceedance probability criterion based stochastic optimal polynomial control of Duffing oscillators, International Journal of Non-Linear Mechanics, 46, 457–469, 2011.
  • [4] Han, X. and Bi, Q.: Bursting oscillations in Duffing’s equation with slowly changing external forcing, Commun. Nonlinear Sci. Numer. Simulat., 16, 4146–4152, 2011.
  • [5] Pirbodaghi, T., Hoseini, S. H., Ahmadian, M. T., and Farrahi, G. H.: Duffing equations with cubic and quintic nonlinearities, Computers and Mathematics with Applications, 57, 500–506, 2009.
  • [6] Beléndez, A., Bernabeua, G., Francés, J., Méndeza, D. I. and Marini, S.: An accurate closed–form approximate solution for the quintic Duffing oscillator equation, Mathematical and Computer Modelling, 52, 637–641, 2010.
  • [7] Ozis, T., and Yildirim, A.: Determination of the frequency–amplitude relation for a Duffing-harmonic oscillator by the energy balance method, Computers and Mathematics with Applications, 54, 1184–1187, 2007.
  • [8] Ganji, D. D., Azimi, M., and Mosto, M.: Energy balance method and amplitude frequency formulation based simulation of strongly non-linear oscillators, Indian Journal of Pure and Applied Physics, 50, 9, 670–675, 2012.
  • [9] Karimian, S. and Azimi, M.: Periodic Solution for Vibration of Euler-Bernoulli Beams Subjected to Axial Load Using DTM and HA, Scientic Bulletin, Series D, 76, 2, 69–76, 2014.
  • [10] Ganji, D. D. and Azimi, M.: Application of max min approach and amplitude frequency formulation to nonlinear oscillation systems, Scientic Bulletin, Series A, 74, 3, 131–140, 2012.
  • [11] Azimi, M. and Azimi, A.: Application of parameter expansion method and variational iteration method to strongly nonlinear oscillator, Trends in Applied Sciences Research, 7, 7, 514–522, 2012.
  • [12] Shakeri, F., Ganji, D. D. and Azimi, M.: Application of HPM- Pade’ Technique to a Jeffery-Hamel Flow Problem, International Review of Mechanical Engineering, 6, 3, 537–540, 2012.
  • [13] Azimi, M. and Azimi, A.: Analytical investigation on 2-D unsteady MHD viscoelastic flow between moving parallel plates using RVIM and HPM, Walailak Journal of Science and Technology, 11, 11, 955–963, 2014.
  • [14] Azimi, A., Azimi, M. and Javanfar, A.: Application of HPM to find analytical solution of Coette flow with variable viscosity, Acta Mechanica et Automatica, 9, 1, 5–8, 2015.
  • [15] Azimi, M. and Riazi, R.: Analytical solution of unsteady GO-water nanofluid flow and heat transfer between two parallel moving plates, Indian Journal of Chemical Technology, 23, 1, 47–52, 2016.
  • [16] Azimi, M., Azimi, A. and Mirzaei, M.: Investigation of the unsteady graphene oxide nanofluid flow between two moving plates, Journal of Computational and Theoretical Nanoscience, 11, 10, 2104–2108, 2014.
  • [17] Azimi, M. and Riazi, R.: Heat transfer analysis of magnetohydrodynamics graphene oxide-water nanofluid flow through convergent–divergent channels, Journal of Computational and Theoretical Nanoscience, 13, 1, 659–665, 2016.
  • [18] Ganji, D. D. and Azimi., M.: Application of DTM on MHD Jeffery Hamel problem with nanoparticles, Scientic Bulletin, Series A, 75, 3, 223–230, 2013.
  • [19] Azimi., M. and Azimi, A.: Investigation on Reaction Diffusion Process Inside a Porous Bio–Catalyst Using DTM, Journal of Bioequivalence and Bioavailability, 7, 123–126, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d4f022b-5d70-4baf-95f0-0b2f69685f0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.