Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nickel alloys, despite their good strength properties at high temperature, are characterized by limited weldability due to their susceptibility to hot cracking. So far, theories describing the causes of hot cracking have focused on the presence of impurities in the form of sulphur and phosphorus. These elements form low-melting eutectic mixtures that cause discontinuities, most frequently along solid solution grain boundaries, under the influence of welding deformations. Progress in metallurgy has effectively reduced the presence of sulphur and phosphorus compounds in the material, however, the phenomenon of hot cracking continues to be the main problem during the welding of nickel-based alloys. It was determined that nickel-based alloys, including Inconel 617, show a tendency towards hot cracking within the high-temperature brittleness range (HTBR). There is no information on any structural changes occurring in the HTBR. Moreover, the literature indicates no correlations between material-related factors connected with structural changes and the amount of energy delivered into the material during welding.This article presents identification of correlations between these factors contributes to the exploration of the mechanism of hot cracking in solid-solution strengthened alloys with an addition of cobalt (e.g. Inconel 617). The article was ended with development of hot cracking model for Ni-Cr-Mo-Co alloys.
Wydawca
Czasopismo
Rocznik
Tom
Strony
241--248
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Institute of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Institute of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
- [1] N.L. Richards, M.C. Chaturvedi, Effect of minor elements on weldability of nickel base superalloys, International Materials Reviews 45, 109-129 (2000).
- [2] M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Science and Technology of Welding and Joining 9, 13-21 (2004).
- [3] E. Tasak, Metalurgia spawania, Wydawnictwo JAK, Kraków (2008).
- [4] J.A. Siefert, J.P. Shingledecker, J.N. DuPont, S.A. David, Weldability and weld performance of candidate nickel based superalloys for advanced ultrasuperitical fossil power plants Part II: weldability and cross-weld creep performance, Science and Technology of Welding and Joining 21, 397-428 (2016).
- [5] T. Chu, H. Xu, Z. Li, F. Lu, Investigation of intrinsic correlation between microstructure evolution and mechanical properties for nickel-based weld metal, Materials & Design 165, 107595 (2019).
- [6] T. Böllinghaus, H. Herold, C.E. Cross, J.C, Lippold, Hot Cracking Phenomena in Welds II, Springer, Berlin (2008).
- [7] G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, J.J. McGee, The mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys, Supplement to the Welding Journal 87, 31-43 (2008).
- [8] K. Mageshkumar, N. Arivazhagan, P. Kuppan, Studies on the effect of filler wires on micro level segregation of alloying elements in the alloy 617 weld fusion zone, Materials Research Express 11, 116579 (2019).
- [9] N.E. Nissley, M.G. Collins, G. Guaytima, J.C. Lippold, Development of the Strain-to-Fracture Test for Evaluating Ductility-Dip Cracking in Austenitic Stainless Steels and Ni-Base Alloys. Welding Research 46, 32-40 (2003).
- [10] N.E. Nissley, J.C. Lippold, Ductility-Dip Cracking Susceptiblity of Nickel-Based Weld Metals: Part 2 - Microstructural Characterization, Welding Research 88, 131-140 (2009).
- [11] N.N. Prokhorov, Russian Castings Production, Moscow, (1962).
- [12] J.M. Kikel, D.M. Parker, Ductility Dip Cracking Susceptibility of Inconel Fill Metal 52 and Inconel Alloy 690, International Conference on trends in welding research; Pine Mountain, United States, Report number MAO-T-98-0233 (1998).
- [13] A.J. Ramirez, J.W. Sowards, J.C. Lippold, Improving the ductility-dip cracking resistance of Ni-base alloys, Journal of Materials Processing Technology 179, 212-218 (2006).
- [14] M.G. Collins, J.C. Lippold, An investigation of ductility-dip cracking in Ni-base filler metals - Part 1, Welding Journal 82, 288-295 (2003).
- [15] H.K. D.H. Bhadeshia, Nickel Based Superalloy, University of Cambridge, http://www.phase-trans.msm.cam.ac.uk/2003/Super-alloys/super-alloys.html (accessed 20 July 2019)
- [16] C. Soares, Gas Turbines: A handbook of air, land and sea applications, Elsevier Science, Oxford (2015).
- [17] J.R. Davis, Nickel, Cobalt, and Their Alloys, ASM International, United States of America: (2000).
- [18] Materials specification, number 27424.
- [19] Materials specification, number 104727/0.
- [20] Materials specification, number 95198/1.
- [21] ASME SB-168:2013 standard, Specification for nickel-chromium-iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, and N06045) and nickel-chromium-cobalt-molybdenum alloy (UNS N06617) plate, sheet and strip, w ASME Boiler and Pressure Vessel Code: II Materials Part B - Nonferrous Material Specifications, 228-241 (2013).
- [22] Gleeble 3800 Applications, Welding Process Simulation, New York, 55-62 (2000).
- [23] A. Turowska, J. Adamiec, Zakres kruchości wysokotemperaturowej złączy spawanych stopu Inconel 625. Przegląd Spawalnictwa 87, 104-107 (2015).
- [24] J. DuPont, J. Lippold, S. Kiser, Welding metallurgy and weldability of nickel-base alloys, John Wiley & Sons, New York (2009).
- [25] P.E.A. Turchi, L. Kaufman, Z.K. Liu, Modeling of Ni-Cr-Mo based alloys: Part I - phase stability. Calphad 30, 70-87 (2006).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d4ef56e-e565-45f6-8d55-a8b625f8785a