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Abstract. In this paper, we describe the logic dual to n—valued Sobocinski logic.
According to the idea presented by Malinowski and Spasowski [1], we introduce the
consequence dual to the consequence of n—valued Sobociniski logic in two ways: by
alogical matrix and by a set of rules of inference. Then we prove that both approaches
are equivalent and the consequence is dual in Wojcicki sense (see [3]).

1. Introduction

By a language of a propositional logic (propositional calculus) we mean an
absolutely free algebra J = (S,F), where S is the set of all formulas built in
the standard way on a countable set of propositional variables p1, ps,... using
functors from the set F.

Let C denote the family of all consequences in S and let Cn € C. The
consequence dCn dual to the consequence Cn is defined as follows:

Definition 1.

a € dOn(X) & 3y (Y C X Acard(Y) <X A () Cn({8}) C C’n({a}))
pBeY

for all formulas o, 8 € S and every X C S.

The definition of a dual consequence applied here was given by Wojcicki [3].
Let J = (S,{=,—}) be the language of Sobocinski’s n—valued logic de-
scribed in [2].
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Definition 2. n-valued implicational-negational Sobociriski propositional cal-
culus is determined by the following matriz:

Msop = ({0,1,2,... ,n—1},{1,2,... ,n—1},{=,-}), n>3.

Here the only nondesignated value is 0.
Functions =, — are defined as follows:

ey Y if z#y,
4 n—1 if =y,

x+1 if z<n—1,
0 if e=n-—1,
for any =,y € {0,1,... ,n—1}.
Let us consider the following matrix, which will be called dual to the matrix
Msob:
Z)ﬁflS'ob = ({Ov L2,...,n— 1}7 {O}, {:>a _'})7 n >3,

where functions = and — are defined in the same way as in the matrix
Z)ﬁSob-

Definition 3.
1. ¥ (o= (= a)).
2. av L (—a = B).

We call the functors —=* and V* the strong negation and the strong disjunc-
tion, respectively.

It is easy to observe that a function —* defined by

n—1 if =0,
o |

0, otherwise,
corresponds in the matrix Mg, to the functor —*.
Similarly, a function V* defined by
Yy if y>1,
cViy=<¢< 0 if =0 and y =0,
n—1 if >1 and y =0,

corresponds in the matrix Mg, to the functor V*.
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Lemma 1. For arbitrary formulas o, 8 € S and for any homomorphism
h:J—({0,1,2,... ,n—1},{=,—%,V*}) the following statements are true:

1.
2.
3.

4.

if h(a = B),h(a) € {1,2,... ,n— 1}, then h(B) € {1,2,... ,n—1},
ha = p) =0 if h(a) € {1,2,... ,n—1} and h(5) =0,
ha) € {1,2,... ,n—1} iff h(=*a) =0,

ha v B)e{l,2,... ,n—1}
iff h(a) €{1,2... ,n—1} or h(B) € {1,2,... ,n—1}.

Let us consider two inference rules:

a=fa ¢«  "a=p),8
rmp.iﬁ , Tmp

Let R = {rpp}, R = {rd}.
Denote by Hom the set of all homomorphisms from (S, {=-, —}) into
({0,1,... ,n—1},{=,-}) and let X C S. We define the matrix consequence

Con(X), the content E(9M) of the matrix 9t and the consequence Cr(X) based
on inference rules from the set X in the standard way:

Definition 4.

1.

CgﬁSob(X) =
={a €S :Vegom(h(X)C{l,... ,n—1} = h(a) €{1,... ,n—1})}.
angob(X) ={a €S :Viegom(h(X) C{0} = h(a) =0)}.

E(msob) = {a €sS: vheHomh(a) S {1,2, N 1}}

. Ed,) ={a €S Viegomh(a) = 0}.

CRr(X) is the least set 'Y, which is closed under the rule 1y, and which
satisfies E(Mgep) UX C Y.
Cra(X) is the least set Y, which is closed under the rule r¢,

p and which
satisfies E(ME ) UX CY.

2. Some properties of Coyy,,, Cone , Cr and Cra

Since modus ponens is the primitive rule of Cr(X) and, as can be easily seen,

a=aoa=(f=a)la=(@=7)=(a=0)=(a=17)cEMsaw),

then the classical deduction theorem holds:



38 Anetta Gérnicka

Lemma 2. For arbitrary o, € S and X C S
B e Cr(XU{a}) iffa = € Cr(X).

Proof. Let us assume that the sequence aq,... ,a, is the proof based on the
set X U{a} of a formula 5. We prove, by induction, that for any 1 < k < n
it holds

o= qf € CR(X).

Let k =1. Then oy = @ or a1 € X.

If oy = «, then since a = a € E(Mgup), we get o = a1 € Cr(X).

If 1 € X, then noticing that a1 = (o = 1) € E(Mge), we can see
that the sequence a1 = (o = 1), a1, = a1 is the proof based on X of the
formula a = a.

Assume now that £ > 1 and for any ¢ < k,a = «o; € Cr(X).

If ag, € X U {a}, then the proof is analogous as in the case k = 1.

Thus, let ay, results by r,, from «;, o for some 4, j < k.

Therefore o = a; = oy, and @ = a4, o = (o = o) € Cr(X). Suppose

Bos- - s Bn-1,a = o and Yo, ... ,Ym—-1,@ = (a; = «ay) are proofs of o =
and a = «;, respectively. Then the sequence
/807 ERE a/Bn—lafYOv <o Ym—1, ((X = (ai = Ckk)) = ((a = ai) = (a = ak))v

a= (a; = ag), (@ = o) = (= a),a = a;,a = ay is a proof of o = ay,
because (a0 = (8= 7)) = ((a = f) = (a = 7)) € E(Msep).

In the end, let us assume that the sequence aq,... ,a, is the proof based
on X of the formula @ = . Then a,, = a = 3. It is easy to observe that the
sequence i, ... ,Qy,a, 3 is the proof based on X U {a} of the formula 5. O

The next Lemma follows directly from definitions and Lemma 1.
Lemma 3. For arbitrary o, € .S and X C S

1. B € O, (X U{a}) iff a = 5 € Copg,, (X).

2. '€ Cong,, ({8)) iff B € Cops_({0}).

3. ae Cm%ob({ﬁ}) iff ~*(a=p) € an‘éob(@)‘

4. The consequences Cﬂﬁsw’cimgob’CR and Cra are finitary.
Lemma 4.

1. The rule ry,y, s an admissible rule of the consequence Coyg,, -

2. The rule 1y, 1s an admissible rule of the consequence Cfqulob'
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Proof.

1. By Lemma 1, for any homomorphism h € Hom such that
h(a = B),h(a) € {1,... ,n — 1} we have h(B) € {1,... ,n — 1}. This
means that 5 € Cop,,,({¢ = B,a}) and then modus ponens is an ad-
missible rule in Cyy,_, -
2. The proof can be carried out on the basis of Definition 4 and Lemma, 1.
O

Lemma 5.
1. Copy () = Cpa(D) = E(MY,,).
2. Cons,, (0) = Cr(0) = E(Msop).
3. Cong,, = Ch-

Proof. Equalities 1. and 2. follow directly from definitions. The proof of the
equality 3. runs as follows:

Let X C S. To prove the inclusion Coy, ,(X) € Cr(X) assume that
a € Cypg,, (X). Due to the finitariness of the matrix consequence Coy, , there
exists a finite set Xo C X such that a € Cop,_, (Xo).

If Xy =0, then using equality 2., we infer that a € Cr(Xp) and therefore
o € CR(X)

Let XO = {al, N ,Oém}.
By Lemma 3, we get o = (... = (o = «@)...) € Oy, (0). Then, by
equality 2. and Lemma 2, we have that « € Cr({a1,... ,am}). As Xy C X,
we see that a € Cr(X).

To prove the inclusion Cr(X) C Cyn,,,(X), we apply Lemma 2, Lemma 3
and the fact that Cg is finitary. U

Let us define recursively a generalized strong disjunction by
Definition 5.

1. V(o) = a,

2. V¥, ) = aV* 3,

3. V¥, ... yane1) = VIV (.. an), Qng1), 1> 2.

Lemma 6. For any natural number m > 1:

Cona ({V*(a1,. - am)}) = Copa_ ({01, 0m}).
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Proof. We are going to show that for any formula o € S,

o€ CEmgOb({\/*(Oél, L. ,am)}) iff a e Cmg()b({al, L. ,am}).

By Lemma 3, we have the following chain of equivalent statements:

o€ Cgmgob({\/*(al, o)) iff VE (ag,. o) € Cong,,({0})
iff o = V*(a1,... ,am) € Copg,, (0).

The equivalence o« = V* (a1, ... ,am) € Copg,, (0) iff a € Con b({al, ce )
can be justified in the following way: °

»,=". Suppose that there exists a homomorphism
ho € Hom such that ho({au,... ,am}) C {0} and ho(a) € {1,... ,n —1}.
Then, by Lemma 1, we get ho(a = V*(aq,... ,am)) = 0.

,<". Let a € Csmg b({al, ..., }) and let us suppose that there exists

a homomorphism hy such that hi(a = V*(ai,... ,q,)) = 0. By Lemma 1,
we have hi(a) € {1,... ,n — 1} and h1(V*(ai1,... ,am)) = 0. According to
Lemma 1, we obtain hi({a1,...,an}) C {0}, so h1(a) = 0. This contradicts
our assumption. U

Lemma 7. For any natural number m > 1:

CRd({\/*(Oél,... ,am)}) - CRd({Oq,... ,am}).

Proof. The proof is inductive on m.

Let us observe that —*(=*(a1 V* ag = a1) = a2) € E(ME,,). By Lemma
5 and Definition 4, we have ay V* ag € Cra({a1, as2}).
Thus Cra({a1 V* az}) € Cra({a1,az}).

Assume that Cra({V*(a1,... ,a%)}) € Cra({aq,... ,ax}) for some k > 2.
We show that

CRd(\/*(Oél, - ,Ozk+1)}) - CRd({Oq, e ,Ozk+1}).
Indeed, CRd({\/*(Oq, e ,ak+1)}) = CRd({\/*(\/*(Oél, e ,ak), ak+1)}) -
C Cra({vi(ar,...,ak), ap1}) = Cra({Vi(ar, ... ;i) } U{onya}) =
=Cra(Cra({v*(an, ... ,ax)})U{art1}) CCra(Cra{on, ... ar})U{ar}) =
= CRd({Oél, L ,ak} U {Oék+1}) = CRd({Oél, o ’ak+1}). [

Lemma 8. For arbitrary formulas o, aq, ... ,qm € S
o€ Cgmsob({\/*(al, - ,Oém)}) iff a € ansob({oq}) n...N Cgmsob({am}).
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Proof. 1t is a direct consequence of Lemma 1 and Definition 4. O

Lemma 9.
1. Cong,,({a}) = 5 a € Cogg, (0)

2. Cﬁm‘éob({a}) =S ac COnmg,(0).

Proof.
1. ,=". Let us assume that Coy,_, ({a}) = S. Since =*(p = p) € Con,,, ({a}),
then applying Lemma 3, we get o € Cypa b({ﬁ*(p =p)}).

But =*(p = p) € Cgﬁ%()b(w), so a € Cgﬁ%Ob(Q).

»,<". Let us assume that o € Cfm‘éob(@)' By Lemma 1 and Definition 4,
we get h(a = v) € {l,...,n — 1} for every homomorphism h and
any formula v € S. By Definition 4 and Lemma 3, we obtain that
v € Copg,,({a}) for any formula v € S, so S C Copg,,({a}). As the
opposite inclusion trivially holds, we obtain Con, , ({a}) = S.

2. The proof is analogous as above. |

3. Main result

Now, we consider the consequences dual in the sense of Definition 1 to the
consequences Cr and Cyy, , and their relation to szg , and Cga.

Theorem 1.
Cpra = Cmcszob = dCyp,,, = dCRg.

Proof. 1° Cpra = Csmg b.
By Lemma 5, we know that Cra(0) = Cong b(@) and since, by Lemma 4,

mp

Cra(X) C Csmg b(X) for every X C S, which means that Cre < Copa .

Sob

Now, let a € Cfmféob(X ). Since the consequence Cmféob is finitary, there
exists a finite set X such that Xo C X and o € Cfqulob(XO)'

If Xo =0, then by Lemma 5 we get a € Cpa(X).

Assume then that Xo = {a,... ,an}.
Applying Lemma 6, we have o € Cm%ob({\/*(ozl, ..., 4y)}). In turn, Lemma 3
yields that =*(a = V*(a1,... ,am)) € Cfqulob(@)' Therefore, by Lemma 5, we
obtain that —*(a = V*(au,... ,am)) € Cra(0).

Hence, a € Cpra({V*(au1,... ,am)}) C Cpra({aa,... ,ap}) and then
o € Cra (X).

Thus we have shown that Cfm‘éob < Cga.

the rule ¢ is an admissible rule of the consequence Csmg , e get
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2° Cmob = dCon,,,-
Let a € angob (X). Then, by finitariness of Cmcszob, we deduce that
a€ Csmg b(Xl) for a finite set X; C X.
If X; = (), then by Lemma 9
Cong,, ({a}) = S. Hence ﬂ@ Comg,, {5}) € Cong,,({a}), ie. a € dCopy,, (X).
Be

If X, ={aq,...,an},thena € szg b({al’ ... ,amn}). Applying Lemmas 6
and 3, we obtain that V*(aq,... , ) € Cog,,({}). From this and Lemma 8,
we have Con,_, ({oa })N...NCong,, {m}) C Cong,, ({}). Thus a € dCopg,, (X)
by Definition 1. We have just shown that szg , < dCong,,-

Suppose now that o € dCop,,, (X). By Definition 1, there exists a finite set

Y C X such that (] Cog,,({8}) S Cons,, (1))
sey

If Y = 0, then from the fact that (| Comg,,({6}) = S and Lemma 9, we
Bed

obtain that o € Cm%ob(X).

Therefore, let us assume that Y = {f1,... ,06n}.

Thus Copg,, ({F1}) N...NCong,, {Bm}) C Comg,,({}). By Lemma 8, we have
that Copg,, ({V*(B1,--.,8m)}) € Cong,, ({a}), ie.,
VE(Bis- - Bm) € Comg,, ({00)-

Applying Lemma 3, we conclude that a € Cyy. a({V*(B1,...,Bm)}).
Then, according to Lemma 6, we obtain that o € Cfmgob({ﬂl"” , Bm})-
Hence a € Cmgob(X) because Y = {f1,...,0m} C X. This proves that
ng;nSOb(X) - Cfmflgob(X)’ SO ngmSob < Cmd .

Sob

3°  The equality dCyy,,, = dCR follows directly from Lemma 5. U

Therefore, the sentential logic (S,Cra) can be regarded as a logic dual to
the Sobocinski’s n—valued logic (S,Cg). Moreover, it is characterized by the
matrix smSobd.

References

[1] G. Malinowski, M. Spasowski. Dual counterparts of Lukasiewicz’s sen-
tential calculi. Studia Logica, 33 (2), 153-162, 1974.

[2] B. Sobociriski. Axiomatization of certain many-valued systems of the
theory of deduction. Roczniki prac naukowych zrzeszenia asystentow
Uniwersystetu Jozefa Pitsudskiego w Warszawie, No. 1, 399419, 1936.

[3] R. Wojcicki. Dual counterparts of consequence operations. Bull. Sect.
Logic, 2 (1), 201-214, 1973.



