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Abstract. In this paper, we describe the logic dual to n�valued Soboci«ski logic.

According to the idea presented by Malinowski and Spasowski [1], we introduce the

consequence dual to the consequence of n�valued Soboci«ski logic in two ways: by

a logical matrix and by a set of rules of inference. Then we prove that both approaches

are equivalent and the consequence is dual in Wójcicki sense (see [3]).

1. Introduction

By a language of a propositional logic (propositional calculus) we mean an

absolutely free algebra J = (S,F), where S is the set of all formulas built in

the standard way on a countable set of propositional variables p1, p2, . . . using
functors from the set F.

Let C denote the family of all consequences in S and let Cn ∈ C. The

consequence dCn dual to the consequence Cn is de�ned as follows:

De�nition 1.

α ∈ dCn(X)⇔ ∃Y
(
Y ⊆ X ∧ card(Y ) < ℵ0 ∧

⋂
β∈Y

Cn({β}) ⊆ Cn({α})
)

for all formulas α, β ∈ S and every X ⊆ S.

The de�nition of a dual consequence applied here was given by Wójcicki [3].

Let J = (S, {⇒,¬}) be the language of Soboci«ski's n�valued logic de-

scribed in [2].
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De�nition 2. n�valued implicational-negational Soboci«ski propositional cal-

culus is determined by the following matrix:

MSob = ({0, 1, 2, . . . , n− 1}, {1, 2, . . . , n− 1}, {⇒,¬}), n ≥ 3.

Here the only nondesignated value is 0.
Functions ⇒,¬ are de�ned as follows:

x⇒ y =

{
y if x �= y,

n− 1 if x = y,

¬x =

{
x+ 1 if x < n− 1,
0 if x = n− 1,

for any x, y ∈ {0, 1, . . . , n− 1}.

Let us consider the following matrix, which will be called dual to the matrix

MSob:

Md
Sob = ({0, 1, 2, . . . , n− 1}, {0}, {⇒,¬}), n ≥ 3,

where functions ⇒ and ¬ are de�ned in the same way as in the matrix

MSob.

De�nition 3.

1. ¬∗α df
= (α⇒ ¬(α⇒ α)).

2. α ∨∗ β df
= (¬∗α⇒ β).

We call the functors ¬∗ and ∨∗ the strong negation and the strong disjunc-

tion, respectively.

It is easy to observe that a function ¬∗ de�ned by

¬∗(x) =

{
n− 1 if x = 0,
0, otherwise,

corresponds in the matrix MSob to the functor ¬∗.
Similarly, a function ∨∗ de�ned by

x ∨∗ y =


y if y ≥ 1,
0 if x = 0 and y = 0,
n− 1 if x ≥ 1 and y = 0,

corresponds in the matrix MSob to the functor ∨∗.
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Lemma 1. For arbitrary formulas α, β ∈ S and for any homomorphism

h : J → ({0, 1, 2, . . . , n− 1}, {⇒,¬∗,∨∗}) the following statements are true:

1. if h(α⇒ β), h(α) ∈ {1, 2, . . . , n − 1}, then h(β) ∈ {1, 2, . . . , n− 1},

2. h(α⇒ β) = 0 i� h(α) ∈ {1, 2, . . . , n− 1} and h(β) = 0,

3. h(α) ∈ {1, 2, . . . , n− 1} i� h(¬∗α) = 0,

4. h(α ∨∗ β) ∈ {1, 2, . . . , n− 1}
i� h(α) ∈ {1, 2 . . . , n− 1} or h(β) ∈ {1, 2, . . . , n− 1}.

Let us consider two inference rules:

rmp :
α⇒ β, α

β
, rdmp :

¬∗(α⇒ β), β
α

.

Let R = {rmp}, Rd = {rdmp}.
Denote by Hom the set of all homomorphisms from (S, {⇒,¬}) into
({0, 1, . . . , n− 1}, {⇒,¬}) and let X ⊆ S. We de�ne the matrix consequence

CM(X), the content E(M) of the matrix M and the consequence CR(X) based
on inference rules from the set X in the standard way:

De�nition 4.

1. CMSob
(X) =

= {α ∈ S : ∀h∈Hom(h(X) ⊆ {1, . . . , n− 1} ⇒ h(α) ∈ {1, . . . , n− 1})} .

2. CMd
Sob

(X) = {α ∈ S : ∀h∈Hom(h(X) ⊆ {0} ⇒ h(α) = 0)} .

3. E(MSob) = {α ∈ S : ∀h∈Homh(α) ∈ {1, 2, . . . , n− 1}} .

4. E(Md
Sob) = {α ∈ S : ∀h∈Homh(α) = 0} .

5. CR(X) is the least set Y, which is closed under the rule rmp and which

satis�es E(MSob) ∪X ⊆ Y.

6. CRd(X) is the least set Y, which is closed under the rule rdmp and which

satis�es E(Md
Sob) ∪X ⊆ Y.

2. Some properties of CMSob
, CMd

Sob
, CR and CRd

Since modus ponens is the primitive rule of CR(X) and, as can be easily seen,

α ⇒ α,α ⇒ (β ⇒ α), (α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ)) ∈ E(MSob),

then the classical deduction theorem holds:
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Lemma 2. For arbitrary α, β ∈ S and X ⊆ S

β ∈ CR(X ∪ {α}) i� α⇒ β ∈ CR(X).

Proof. Let us assume that the sequence α1, . . . , αn is the proof based on the

set X ∪ {α} of a formula β. We prove, by induction, that for any 1 � k � n
it holds

α⇒ αk ∈ CR(X).

Let k = 1. Then α1 = α or α1 ∈ X.

If α1 = α, then since α⇒ α ∈ E(MSob), we get α⇒ α1 ∈ CR(X).
If α1 ∈ X, then noticing that α1 ⇒ (α ⇒ α1) ∈ E(MSob), we can see

that the sequence α1 ⇒ (α⇒ α1), α1, α⇒ α1 is the proof based on X of the

formula α⇒ α1.

Assume now that k > 1 and for any i < k, α⇒ αi ∈ CR(X).
If αk ∈ X ∪ {α}, then the proof is analogous as in the case k = 1.
Thus, let αk results by rmp from αi, αj for some i, j < k.

Therefore αj = αi ⇒ αk and α ⇒ αi, α ⇒ (αi ⇒ αk) ∈ CR(X). Suppose

β0, . . . , βn−1, α ⇒ αi and γ0, . . . , γm−1, α ⇒ (αi ⇒ αk) are proofs of α ⇒ αi

and α⇒ αj , respectively. Then the sequence

β0, . . . , βn−1, γ0, . . . , γm−1, (α⇒ (αi ⇒ αk))⇒ ((α⇒ αi)⇒ (α⇒ αk)),
α⇒ (αi ⇒ αk), (α⇒ αi)⇒ (α⇒ αk), α⇒ αi, α⇒ αk is a proof of α⇒ αk,

because (α⇒ (β ⇒ γ))⇒ ((α⇒ β)⇒ (α⇒ γ)) ∈ E(MSob).
In the end, let us assume that the sequence α1, . . . , αn is the proof based

on X of the formula α⇒ β. Then αn = α⇒ β. It is easy to observe that the

sequence α1, . . . , αn, α, β is the proof based on X ∪ {α} of the formula β. �

The next Lemma follows directly from de�nitions and Lemma 1.

Lemma 3. For arbitrary α, β ∈ S and X ⊆ S

1. β ∈ CMSob
(X ∪ {α}) i� α⇒ β ∈ CMSob

(X).

2. α ∈ CMSob
({β}) i� β ∈ CMd

Sob
({α}).

3. α ∈ CMd
Sob

({β}) i� ¬∗(α⇒ β) ∈ CMd
Sob

(∅).

4. The consequences CMSob
, CMd

Sob
, CR and CRd are �nitary.

Lemma 4.

1. The rule rmp is an admissible rule of the consequence CMSob
.

2. The rule rdmp is an admissible rule of the consequence CMd
Sob
.
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Proof.

1. By Lemma 1, for any homomorphism h ∈ Hom such that

h(α ⇒ β), h(α) ∈ {1, . . . , n − 1} we have h(β) ∈ {1, . . . , n − 1}. This
means that β ∈ CMSob

({α ⇒ β, α}) and then modus ponens is an ad-

missible rule in CMSob
.

2. The proof can be carried out on the basis of De�nition 4 and Lemma 1.

✷

Lemma 5.

1. CMd
Sob

(∅) = CRd(∅) = E(Md
Sob).

2. CMSob
(∅) = CR(∅) = E(MSob).

3. CMSob
= CR.

Proof. Equalities 1. and 2. follow directly from de�nitions. The proof of the

equality 3. runs as follows:

Let X ⊆ S. To prove the inclusion CMSob
(X) ⊆ CR(X) assume that

α ∈ CMSob
(X). Due to the �nitariness of the matrix consequence CMSob

there

exists a �nite set X0 ⊆ X such that α ∈ CMSob
(X0).

If X0 = ∅, then using equality 2., we infer that α ∈ CR(X0) and therefore

α ∈ CR(X).
Let X0 = {α1, . . . , αm}.

By Lemma 3, we get α1 ⇒ (. . . ⇒ (αm ⇒ α) . . . ) ∈ CMSob
(∅). Then, by

equality 2. and Lemma 2, we have that α ∈ CR({α1, . . . , αm}). As X0 ⊆ X,
we see that α ∈ CR(X).

To prove the inclusion CR(X) ⊆ CMSob
(X), we apply Lemma 2, Lemma 3

and the fact that CR is �nitary. �

Let us de�ne recursively a generalized strong disjunction by

De�nition 5.

1. ∨∗(α) = α,

2. ∨∗(α, β) = α ∨∗ β,

3. ∨∗(α1, . . . , αn+1) = ∨∗(∨∗(α1, . . . , αn), αn+1), n � 2.

Lemma 6. For any natural number m � 1:

CMd
Sob

({∨∗(α1, . . . , αm)}) = CMd
Sob

({α1, . . . , αm}).
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Proof. We are going to show that for any formula α ∈ S,

α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}) i� α ∈ CMd
Sob

({α1, . . . , αm}).

By Lemma 3, we have the following chain of equivalent statements:

α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}) i� ∨∗ (α1, . . . , αm) ∈ CMSob
({α})

i� α⇒ ∨∗(α1, . . . , αm) ∈ CMSob
(∅).

The equivalence α⇒ ∨∗(α1, . . . , αm) ∈ CMSob
(∅) i� α ∈ CMd

Sob
({α1, . . . , αm})

can be justi�ed in the following way:

�⇒�. Suppose that there exists a homomorphism

h0 ∈ Hom such that h0({α1, . . . , αm}) ⊆ {0} and h0(α) ∈ {1, . . . , n− 1}.
Then, by Lemma 1, we get h0(α⇒ ∨∗(α1, . . . , αm)) = 0.

�⇐�. Let α ∈ CMd
Sob

({α1, . . . , αm}) and let us suppose that there exists

a homomorphism h1 such that h1(α ⇒ ∨∗(α1, . . . , αm)) = 0. By Lemma 1,

we have h1(α) ∈ {1, . . . , n − 1} and h1(∨∗(α1, . . . , αm)) = 0. According to

Lemma 1, we obtain h1({α1, . . . , αm}) ⊆ {0}, so h1(α) = 0. This contradicts
our assumption. �

Lemma 7. For any natural number m � 1:

CRd({∨∗(α1, . . . , αm)}) ⊆ CRd({α1, . . . , αm}).

Proof. The proof is inductive on m.

Let us observe that ¬∗(¬∗(α1 ∨∗ α2 ⇒ α1) ⇒ α2) ∈ E(Md
Sob). By Lemma

5 and De�nition 4, we have α1 ∨∗ α2 ∈ CRd({α1, α2}).
Thus CRd({α1 ∨∗ α2}) ⊆ CRd({α1, α2}).

Assume that CRd({∨∗(α1, . . . , αk)}) ⊆ CRd({α1, . . . , αk}) for some k ≥ 2.
We show that

CRd(∨∗(α1, . . . , αk+1)}) ⊆ CRd({α1, . . . , αk+1}).

Indeed, CRd({∨∗(α1, . . . , αk+1)}) = CRd({∨∗(∨∗(α1, . . . , αk), αk+1)}) ⊆
⊆ CRd({∨∗(α1, . . . , αk), αk+1}) = CRd({∨∗(α1, . . . , αk)} ∪ {αk+1}) =
=CRd(CRd({∨∗(α1, . . . , αk)})∪{αk+1})⊆CRd(CRd({α1, . . . , αk})∪{αk+1})=
= CRd({α1, . . . , αk} ∪ {αk+1}) = CRd({α1, . . . , αk+1}). �

Lemma 8. For arbitrary formulas α,α1, . . . , αm ∈ S
α ∈ CMSob

({∨∗(α1, . . . , αm)}) i� α ∈ CMSob
({α1}) ∩ . . . ∩ CMSob

({αm}).
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Proof. It is a direct consequence of Lemma 1 and De�nition 4. �

Lemma 9.

1. CMSob
({α}) = S ⇔ α ∈ CMd

Sob
(∅).

2. CMd
Sob

({α}) = S ⇔ α ∈ CMSob
(∅).

Proof.

1. �⇒�. Let us assume that CMSob
({α}) = S. Since ¬∗(p⇒ p) ∈ CMSob

({α}),
then applying Lemma 3, we get α ∈ CMd

Sob
({¬∗(p⇒ p)}).

But ¬∗(p⇒ p) ∈ CMd
Sob

(∅), so α ∈ CMd
Sob

(∅).
�⇐�. Let us assume that α ∈ CMd

Sob
(∅). By Lemma 1 and De�nition 4,

we get h(α ⇒ γ) ∈ {1, . . . , n − 1} for every homomorphism h and

any formula γ ∈ S. By De�nition 4 and Lemma 3, we obtain that

γ ∈ CMSob
({α}) for any formula γ ∈ S, so S ⊆ CMSob

({α}). As the

opposite inclusion trivially holds, we obtain CMSob
({α}) = S.

2. The proof is analogous as above. ✷

3. Main result

Now, we consider the consequences dual in the sense of De�nition 1 to the

consequences CR and CMSob
and their relation to CMd

Sob
and CRd .

Theorem 1.

CRd = CMd
Sob

= dCMSob
= dCR.

Proof. 1◦ CRd = CMd
Sob
.

By Lemma 5, we know that CRd(∅) = CMd
Sob

(∅) and since, by Lemma 4,

the rule rdmp is an admissible rule of the consequence CMd
Sob

, we get

CRd(X) ⊆ CMd
Sob

(X) for every X ⊆ S, which means that CRd ≤ CMd
Sob
.

Now, let α ∈ CMd
Sob

(X). Since the consequence CMd
Sob

is �nitary, there

exists a �nite set X0 such that X0 ⊆ X and α ∈ CMd
Sob

(X0).
If X0 = ∅, then by Lemma 5 we get α ∈ CRd(X).
Assume then that X0 = {α1, . . . , αm}.

Applying Lemma 6, we have α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}). In turn, Lemma 3

yields that ¬∗(α⇒ ∨∗(α1, . . . , αm)) ∈ CMd
Sob

(∅). Therefore, by Lemma 5, we

obtain that ¬∗(α⇒ ∨∗(α1, . . . , αm)) ∈ CRd(∅).
Hence, α ∈ CRd({∨∗(α1, . . . , αm)}) ⊆ CRd({α1, . . . , αm}) and then

α ∈ CRd(X).
Thus we have shown that CMd

Sob
≤ CRd .
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2◦ CMd
Sob

= dCMSob
.

Let α ∈ CMd
Sob

(X). Then, by �nitariness of CMd
Sob

, we deduce that

α ∈ CMd
Sob

(X1) for a �nite set X1 ⊆ X.

If X1 = ∅, then by Lemma 9

CMSob
({α}) = S. Hence

⋂
β∈∅

CMSob
({β}) ⊆ CMSob

({α}), i.e. α ∈ dCMSob
(X).

IfX1 = {α1, . . . , αm}, then α ∈ CMd
Sob

({α1, . . . , αm}). Applying Lemmas 6

and 3, we obtain that ∨∗(α1, . . . , αm) ∈ CMSob
({α}). From this and Lemma 8,

we have CMSob
({α1})∩. . .∩CMSob

({αm}) ⊆ CMSob
({α}). Thus α ∈ dCMSob

(X)
by De�nition 1. We have just shown that CMd

Sob
≤ dCMSob

.

Suppose now that α ∈ dCMSob
(X). By De�nition 1, there exists a �nite set

Y ⊆ X such that
⋂

β∈Y
CMSob

({β}) ⊆ CMSob
({α}).

If Y = ∅, then from the fact that
⋂
β∈∅

CMSob
({β}) = S and Lemma 9, we

obtain that α ∈ CMd
Sob

(X).
Therefore, let us assume that Y = {β1, . . . , βm}.

Thus CMSob
({β1})∩ . . .∩CMSob

({βm}) ⊆ CMSob
({α}). By Lemma 8, we have

that CMSob
({∨∗(β1, . . . , βm)}) ⊆ CMSob

({α}), i.e.,
∨∗(β1, . . . , βm) ∈ CMSob

({α}).
Applying Lemma 3, we conclude that α ∈ CMSob

d({∨∗(β1, . . . , βm)}).
Then, according to Lemma 6, we obtain that α ∈ CMd

Sob
({β1, . . . , βm}).

Hence α ∈ CMd
Sob

(X) because Y = {β1, . . . , βm} ⊆ X. This proves that

dCMSob
(X) ⊆ CMd

Sob
(X), so dCMSob

≤ CMd
Sob
.

3◦ The equality dCMSob
= dCR follows directly from Lemma 5. �

Therefore, the sentential logic (S,CRd) can be regarded as a logic dual to

the Soboci«ski's n�valued logic (S,CR). Moreover, it is characterized by the

matrix MSob
d.
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