PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of temperature and stress distribution in thermal barrier coatings in the context of differences in input data values – external ceramic layer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacje numeryczne rozkładu temperatury oraz stanu naprężeń w powłokowych barierach cieplnych w kontekście różnic w wartościach danych wejściowych – warstwa ceramiczna
Języki publikacji
EN
Abstrakty
EN
The article presents the research results on the impact of differences in input data values concerning materials used in thermal barrier coating systems on the results of simulations using the finite element method of temperature distribution and Huber-Mises equivalent stresses. Literature data on basic physical quantities important from the point of view of modelling, i.e. thermal conductivity coefficient, linear expansion coefficient, specific heat, density, Poisson fraction and Young’s modulus, were reviewed. It has been shown that the data is characterised by a very wide range of values, which makes the issue of the final simulation results debatable. The study performed a simple statistical analysis of the available data for the 8YSZ compound, using the minimum, maximum, mean, and median values to simulate deadness. It was found that the results of the obtained simulations with the use of these data differ fundamentally from each other.
PL
Symulacje numeryczne rozkładu temperatury oraz stanu naprężeń w powłokowych barierach cieplnych w kontekście różnic w wartościach danych wejściowych – warstwa ceramiczna W artykule przedstawiono wyniki badań nad wpływem różnic w wartościach danych wejściowych dotyczących materiałów używanych w systemach powłokowych barier cieplnych na wyniki symulacji metodą elementów skończonych rozkładu temperatury i naprężeń zastępczych Hubera-Misesa. Dokonano przeglądu danych literaturowych na temat podstawowych wielkości fizycznych istotnych z punktu widzenia modelowania, tj. współczynnika przewodnictwa cieplnego, współczynnika rozszerzalności liniowej, ciepła właściwego, gęstości, ułamka Poissona oraz modułu Younga. Wykazano, że dane charakteryzują się bardzo dużym rozrzutem wartości, co sprawia, że finalne wyniki symulacji są dyskusyjne. W badaniach przeprowadzono prostą analizę statystyczną dostępnych danych dotyczących związku 8YSZ, wykorzystując do symulacji wartości minimalne, maksymalne, średnią i medianę. Stwierdzono, że uzyskane wyniki symulacji z użyciem tych danych różnią się od siebie w sposób zasadniczy.
Rocznik
Tom
Strony
247--252
Opis fizyczny
Bibliogr. 35 poz., tab., rys., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Materials Technology, Material Innovation Laboratory, Katowice, Poland
Bibliografia
  • [1] N. P. Padture, M. Gell, E. H. Jordan. 2002. “Thermal Barrier Coatings for Gas-Turbine Engine Appli cations.” Science 296(5566): 280–284. DOI: 10.1126/science.1068609.
  • [2] H. E. Evans. 2011. “Oxidation Failure of TBC Systems: An Assessment of Mechanisms.” Surface and Coatings Technology 206(7): 1512–1521. DOI: 10.1016/j.surfcoat.2011.05.053.
  • [3] M. Białas. 2008. “Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings.” Surface and Coatings Technology 202(24): 6002–6010. DOI: 10.1016/j.surfcoat.2008.06.178.
  • [4] E.P. Busso, Z.Q. Qian, M. P. Taylor, H. E. Evans. 2009. “The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems.” Acta Materialia 57(8): 2349–2361. DOI: 10.1016/j.actamat.2009.01.017.
  • [5] G. C. Chang, W. Phucharoen, R. A. Miller. 1987. “Finite Element Thermal Stress Solutions for Thermal Barrier Coatings.” Surface and Coatings Technology 32(1–4): 307–325. DOI: 10.1016/0257-8972(87)90116-2.
  • [6] A.M. Freborg, B.L. Ferguson, W.J. Brindley, G.J. Petrus, . 1998. “Modeling Oxidation Induced Stresses in Thermal Barrier Coatings.” Materials Science and Engineering: A 245(2): 182– 190. DOI: 10.1016/S0921-5093(97)00849-6.
  • [7] H.S. Zhang, H.C. Sun, X.G. Chen. 2012. “Effect of Top-Layer Thickness on Residual Stresses of Plasma-Spraying Sm2Zr2O7/ YSZ Thermal Barrier Coatings.” Advanced Materials Research 347–353: 40–43. DOI: 10.4028/www.scientific.net/amr.347-353.40.
  • [8] K. Slámečka, P. Skalka, J. Pokluda, L. Čelko. 2016. “Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with an Irregular Top-Coat/Bond-Coat Interface.” Surface and Coatings Technology 304: 574–583. DOI: 10.1016/j.surfcoat.2016.07.066.
  • [9] M. Abbas, H.J. Hasham, Y. Baig. 2016. “Numerical Parametric Analysis of Bond Coat Thickness Effect on Residual Stresses in Zirconia-Based Thermal Barrier Coatings.” High-Temperature Materials and Processes 35(2): 201–207. DOI: 10.1515/htmp2014-0185. Fig. 6. fig 4 fig 5 fig 6 Fig. 4. Fig. 5 . . Fig. 4. Fig. 5 . . Fig. 4. Fig. 5 Fig. 6. Simulation results of the von Mises stress distribution for different values (minimum, maximum, median, average) of the physical parameters of materials – for the temperature distribution as in Fig. 4 Rys. 6. Wyniki symulacji rozkładu naprężeń według hipotezy Hubera-Misesa dla różnych wartości (minimum, maksimum, mediany, średniej) parametrów fizycznych materiałów – rozkład temperatury jak na rys. 4 essential to verify the sources of material data, not only by reviewing the latest publications containing them but also by searching for primary sources, sometimes from 40 years ago. Another element that should be considered is the dispersion of data present in the literature. The best tool to assess this effect is simple statistical parameters such as mean, median, kurtosis and skewness. They will make it possible to define the range of values to which we can assign the material data used and determine their reliability.
  • [10] N. Nayebpashaee, E. Etemadi, B. Mohammad Sadeghi, S. H. Seyedein. 2021. “Experimental and Numerical Study of the Thermo-Mechanical Behavior of Plasma-Sprayed Gadolinium and Yitria Zirconate-Based Thermal Barrier Coatings.” Advanced Ceramics Progress 7(4): 36–51. DOI: 10.30501/acp.2022.322563.1078.
  • [11] C.H. Hsueh, P.F. Becher, E.R. Fuller, S.A. Langer, W.C. Carter. 1999. “Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations.” Materials Science Forum 308–311: 442–449. DOI: 10.4028/www.scientific.net/MSF.308-311.442.
  • [12] M. Ranjbar-Far, J. Absi, G. Mariaux, F. Dubois. 2010. “Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method.” Materials and Design 31(2): 772–781. DOI: 10.1016/j.matdes.2009.08.005.
  • [13] A. Burov, E. Fedorova. 2021. “Modeling of Interface Failure in a Thermal Barrier Coating System on Ni-Based Superalloys.” Engineering Failure Analysis 123: 105320. DOI: 10.1016/j.engfailanal.2021.105320.
  • [14] X. Chen, J. Ahmad, J. Price. 2004. “Measuring and Modeling Residual Stresses in Air Plasma Spray Thermal Barrier Coatings.” 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceedings 25: 491–496. DOI: 10.1002/9780470291191.ch74.
  • [15] Y. Zhang, Y. Wang, K. Yin, H. Xu. 2004. “Finite Element Analysis of Residual Stresses in Zirconia Thermal Barrier Coatings on Superalloy.” Journal of the Ceramic Society of Japan: Supplement 112-1: S1122–S1124. DOI: 10.14852/jcersjsuppl.112.0.S1122.0.
  • [16] L. Wu, J. Zhu, H. Xie. 2014. “Numerical and Experimental Investigation of Residual Stress in Thermal Barrier Coatings During APS Process.” Journal of Thermal Spray Technology 23: 653–665. DOI: 10.1007/s11666-014-0063-8.
  • [17] M. Mohammadi, E. Poursaeidi. 2019. “Failure Mechanisms and Their Finite Element Modeling of Air Plasma Spray Thermal Barrier Coatings: A Review.” Advanced Materials and Novel Coatings 7(27): 1937–1953. DOI:/amnc.2019.7.27.6.
  • [18] G. Qian, T. Nakamura, C. C. Berndt. 1998. “Effects of Thermal Gradient and Residual Stresses on Thermal Barrier Coating Fracture.” Mechanics of Materials 27(2): 91–110. DOI: 10.1016/S0167-6636(97)00042-2.
  • [19] A. Bhattacharyya, D. Maurice. 2019. “Residual Stresses in Functionally Graded Thermal Barrier Coatings.” Mechanics of Materials 129: 50–56. DOI: 10.1016/j.mechmat.2018.11.002.
  • [20] F. Guo, R. Zhou, Y. Shang, H. Zhang, Y. Pei, S. Li, S. Gong. 2021. “Development of Deposition Beam Current Dependent Microstructure and Nanomechanical Properties in ZrO2-8wt%Y2O3 Thermal Barrier Coatings Produced by Electron Beam-Physical Vapour Deposition Technique.” Materials Chemistry and Physics 272: 124998. DOI: 10.1016/j.matchemphys.2021.124998.
  • [21] C.H. Hsueh, E.R. Fuller. 2000. “Analytical Modeling of Oxide Thickness Effects on Residual Stresses in Thermal Barrier Coatings.” Scripta Materialia 42(8): 781–787. DOI: 10.1016/S1359-6462(99)00430-3.
  • [22] W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y.D. Lee, Z. Mutasim. 1996. “Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications.” Journal of the American Ceramic Society 79: 3003– 3012. DOI: 10.1111/j.1151-2916.1996.tb08070.x.
  • [23] S.Q. Nusier, G.M. Newaz. 1998. “Transient Residual Stresses in Thermal Barrier Coatings: Analytical and Numerical Results.” Journal of Applied Mechanics 65(2): 346–353. DOI: 10.1115/1.2789061.
  • [24] P. Bengtsson, C. Persson. 1997. “Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings.” Surface and Coatings Technology 92(1–2): 78–86. DOI: 10.1016/S0257-8972(97)00082-0.
  • [25] C.H. Hsueh, J.A. Haynes, M.J. Lance, P.F. Becher, M.K. Ferber, E.R. Fuller, S.A. Langer, W.C. Carter, W.R. Cannon. 1999. “Effects of Interface Roughness on Residual Stresses in Thermal Barrier Coatings.” Journal of the American Ceramic Society 82: 1073–1075. DOI: 10.1111/j.1151-2916.1999.tb01878.x.
  • [26] V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stöver. 1999. “Effects of Deposition Temperature and Thermal Cycling on Residual Stress State in Zirconia-Based Thermal Barrier Coatings.” Surface and Coatings Technology 120–121: 103–111. DOI: 10.1016/S0257-8972(99)00341-2.
  • [27] H. Chen, Y. Liu, Y. Gao, S. Tao, H. Luo. 2010. “Design, Preparation, and Characterization of Graded YSZ/La2Zr2O7 Thermal Barrier Coatings.” Journal of the American Ceramic Society 93: 1732–1740. DOI: 10.1111/j.1551- 2916.2010.03610.x.
  • [28] T. Wakui, J. Malzbender, R.W. Steinbrech. 2004. “Strain Analysis of Plasma Sprayed Thermal Barrier Coatings under Mechanical Stress.” Journal of Thermal Spray Technology 13: 390–395. DOI: 10.1361/10599630420425.
  • [29] Y. Zhou, L. Yang, W. Zhu. 2022. Residual Stresses in TBCs. In eidem: Thermal Barrier Coatings: Failure Theory and Evaluation Technology. Singapore: Springer Singapore.
  • [30] D. Renusch, H. Echsler, M. Schütze. 2004. “Progress in Lifetime Modeling of APS-TBC Part I: Residual, Thermal and Growth Stresses Including the Role of Thermal Fatigue.” Materials at High Temperatures 21(2): 65–76. DOI: 10.1179/mht.2004.010.
  • [31] M. Ranjbar-Far, J. Absi, G. Mariaux, D. S. Smith. 2011. “Crack Propagation Modeling on the Interfaces of Thermal Barrier Coating System with Different Thickness of the Oxide Layer and Different Interface Morphologies.” Materials and Design 32(10): 4961–4969. DOI: 10.1016/j.matdes.2011.05.039.
  • [32] E. Tzimas, H. Müllejans, S.D. Peteves, J. Bressers, W. Stamm. 2000. “Failure of Thermal Barrier Coating Systems under Cyclic Thermomechanical Loading.” Acta Materialia 48(18–19): 4699–4707. DOI: 10.1016/S1359-6454(00)00260-3.
  • [33] P. Bednarz. 2007. Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems. Jülich: Forschungszentrum Jülich.
  • [34] Y. Feng, T.S. Dong, B.G. Fu, G.L. Li, Q. Liu, R. Wang. 2020. “Thermal Shock Resistance of Double-Layer Thermal Barrier Coatings.” Journal of Materials Research 35: 2808–2816. DOI: 10.1557/jmr.2020.228.
  • [35] www.specialmetals.com (access: 17.07.2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d4d099d-c67f-4982-b6a7-1f240d0b7881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.