PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Damage behaviour and GTN parameter analysis of TC4 powder metallurgy titanium alloy during hot deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The damage and fracture behaviour of TC4 powder metallurgy titanium alloy were studied by isothermal uniaxial tensile tests. The results show that microcracks formed at grain boundaries, inclusions, initial pores, and adjacent pores and cracks were gathered and perpendicularly linked to the tensile direction, eventually leading to the macroscopic fracture of the material. Increasing the temperature and strain rate promotes the occurrence of dynamic recovery and subgrain merging nucleation, which leads to an increase in the fracture strain and plasticity of the material. Combined with the response surface methodology and genetic optimization algorithm, the GTN damage parameters were obtained by the reverse calibration method. The calculated flow stresses, based on the GTN damage model, are in good agreement with the experimental ones, indicating that the damage parameters can reflect the damage process of the material. In this study, the sensitivity of the damage parameters along with the influence of temperature and strain rate on them was analysed.
Rocznik
Strony
art. no. e165, 2023
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Ordos Institute of Technology, Ordos 017000, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Ordos Institute of Technology, Ordos 017000, China
Bibliografia
  • 1. Li JL, Wang BY, Ji HC, Zhou J, Fu XB, Huang X. Numerical and experimental investigation on the cross-wedge rolling of pow- der sintering TC4 alloy. Int J Adv Manuf Technol. 2018;94(5– 8):2149–62. https://doi.org/10.1007/s00170-017-0992-8.
  • 2. Feng PN, Wang BY, Yang CP, Ju ZD, Zhang HB. The form- ability, microstructure, and mechanical properties of powder- sintered TC4 alloy hollow shafts formed by cross-wedge rolling. J Mater Eng Perform. 2022;31:8989–9000. https://doi.org/10. 1007/s11665-022-06960-9.
  • 3. Jia JB, Lu C, Zhong XX, Yang ZG, Xu Y, Sun W, Luo JT. Microstructure evolution and mechanical properties of a pow- der metallurgy Ti-22Al-25Nb alloy processed through isother- mal rolling and solution and aging treatment. Adv Eng Mater. 2019;22(2):1900753. https://doi.org/10.1002/adem.201900753.
  • 4. Kumar P, Tandon P. Investigating the capability of the Lemaitre damage model to establish the incremental sheet forming pro- cess. Arch Civ Mech Eng. 2022;22:66. https://doi.org/10.1007/ s43452-022-00391-y.
  • 5. Zhang Z, Liu D, Man TC, Li N, Yang YH, Pang YH, Wang JG. Numerical and experimental investigations on Mannes- mann effect of nickel-based superalloy. Arch Civ Mech Eng. 2022;22:133. https://doi.org/10.1007/s43452-022-00452-2.
  • 6. Xiao WC, Wang BY. Behaviors and modeling of thermal form- ing limits of AA7075 aluminum sheet. Arch Civ Mech Eng. 2020;20:10. https://doi.org/10.1007/s43452-020-0009-5.
  • 7. Deng HK, Mao YF, Li GY, Zhang X, Cui JJ. AA5052 failure prediction of electromagnetic flanging process using a com- bined fracture model. Arch Civ Mech Eng. 2022;22:84. https:// doi.org/10.1007/s43452-022-00390-z.
  • 8. Qian LY, Xu SN, Li H, Zhou YW, Sun CY, Ma TY. Influences of stress states and loading directions on the anisotropic fracture of magnesium alloy AZ31B sheet under tension-dominated form- ing conditions. Arch Civ Mech Eng. 2022. https://doi.org/10. 1007/s43452-022-00535-0.
  • 9. Carabajar S, Verdu C, Fougeres R. Damage mechanisms of a nickel alloyed sintered steel during tensile tests. Mater Sci Eng A. 1997;232(1):80–7. https://doi.org/10.1016/S0921-5093(97) 00100-7.
  • 10. Straffelini G, Molinari A. Evolution of tensile damage in porous iron. Mater Sci Eng A. 2002;334(1):96–103. https://doi.org/10. 1016/S0921-5093(01)01776-2.
  • 11. Gurson AL. Continuum theory of ductile rupture by void nucle- ation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99(1):2–15. https:// doi.org/10.1115/1.3443401.
  • 12. Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract. 1982;18:237–52. https://doi.org/10. 1007/BF00015686.
  • 13. Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984;32(1):157–69. https:// doi.org/10.1016/0001-6160(84)90213-X.
  • 14. Yildiz RA, Yilmaz S. Experimental Investigation of GTN model parameters of 6061 Al alloy. Eur J Mech A/Solids. 2020;83:104040. https://doi.org/10.1016/j.euromechsol.2020. 104040.
  • 15. Gao TH, Ying L, Hu P, Han X, Sun J. Investigation on mechani- cal behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: experimental trials, numerical analy- sis. J Manuf Process. 2020;50:1–16. https://doi.org/10.1016/j. jmapro.2019.12.012.
  • 16. Gao PF, Guo J, Zhan M, Lei ZN, Fu MW. Microstructure and damage based constitutive modelling of hot deformation of tita- nium alloys. J Alloys Compd. 2020;831(5):154851. https://doi. org/10.1016/j.jallcom.2020.154851.
  • 17. He W, Xu WC, Shan DB, Cheng JB. An extended GTN model for low stress triaxiality and application in spinning forming. J Mater Process Technol. 2019;263:112–28. https:// doi. org/ 10. 1016/j.jmatprotec.2018.07.032.
  • 18. Nahshon K, Hutchinson JW. Modification of the Gurson Model for shear failure. Eur J Mech A Solids. 2008;27(1):1–17. https:// doi.org/10.1016/j.euromechsol.2007.08.002.
  • 19. Liang X. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech. 2008;75(11):3343– 66. https://doi.org/10.1016/j.engfracmech.2007.07.022.
  • 20. Malcher L, Pires FMA, Sá JMACD. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014;54:193–228. https://doi.org/10.1016/j.ijplas.2013.08.015.
  • 21. Zao H, Hao Z, Hu YM. An improved shear modified GTN model for ductile fracture of aluminium alloys under differ- ent stress states and its parameters identification. Int J Mech Sci. 2021;192:106081. https://doi.org/10.1016/j.ijmecsci.2020. 106081.
  • 22. Mcqueen HJ, Imbert CAC. Dynamic recrystallization: plasticity enhancing structural development. J Alloys Compd. 2004;378(1– 2):35–43. https://doi.org/10.1016/j.jallcom.2003.10.067.
  • 23. Li G, Cui SS. Meso-mechanics and damage evolution of AA5182- O aluminum alloy sheet Based on the GTN model. Eng Fract Mech. 2020;235:107162. https://doi.org/10.1016/j.engfracmech. 2020.107162.
  • 24. Yildiz RA, Yilmaz S. Experimental investigation of GTN model parameters of 6061 Al alloy. Eur J Mech/A Solids. 2020;83:104040. https:// doi. org/ 10. 1016/j. eurom echsol. 2020. 104040.
  • 25. Ilyas M, Hussain G, Espinosa C. Failure and strain gradient analy- ses in incremental forming using GTN model. Int J Lightweight Mater Manuf. 2019;2(2):177–85. https://doi.org/10.1016/j.ijlmm. 2018.12.002.
  • 26. Amer M, Shazly M, Mohamed M, et al. Ductile damage pre- diction of AA 5754 sheet during cold forming condition. J Mech Sci Tech. 2020;34(10):4219–28. https://doi.org/10.1007/ s12206-020-0914-9.
  • 27. Tang BT, Wu FX, Wang QF, Li CC, Liu JY, Ge HL. Numerical and experimental study on ductile fracture of quenchable boron steels with different microstructure. Int J Lightweight Mater Manuf. 2020;3(1):55–65. https://doi.org/10.1016/j.ijlmm.2019. 07.001.
  • 28. Cui XL, Zhang WW, Zhang ZC, Chen YZ, Lin P, Chi CZ. Pre- diction of forming limit of dual-phase 500 steel sheets using the GTN ductile damage model in an innovative hydraulic bulg- ing test. JOM. 2018;70(8):1542–7. https:// doi. org/ 10. 1007/ s11837-018-2936-7.
  • 29. Wang LY, Li L. Parameter identification of GTN model using response surface methodology for high-strength steel BR1500HS. J Mater Eng Perform. 2017;26:3831–8. https://doi.org/10.1007/ s11665-017-2806-4.
  • 30. Chahboub Y, Szavai S. Determination of GTN parameters for SENT specimen during ductile fracture. Proc Struct Integr. 2019;16:81–8. https://doi.org/10.1016/j.prostr.2019.07.025.
  • 31. Nasir MW, Chalal H, Abed-Meraim F. Formability prediction using bifurcation criteria and GTN damage model. Int J Mech Sci. 2021;191(11):106083. https:// doi. org/ 10. 1016/j. ijmec sci. 2020.106083.
  • 32. Shikalgar TD, Dutta BK, Chattopadhyay J. Analysis of p-SPT specimens using Gurson parameters ascertained by artificial neu- ral network. Eng Fract Mech. 2020;240(111786):107324. https:// doi.org/10.1016/j.engfracmech.2020.107324.
  • 33. Can W, Liu XG, Gui JT, Du ZL, Xu ZF, Guo BF. Effect of MnS inclusions on plastic deformation and fracture behavior of the steel matrix at high temperature. Vacuum. 2020;174:109209. https:// doi.org/10.1016/j.vacuum.2020.109209.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d459b54-7d10-45a5-9245-55db44b253e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.