Elżbieta GABRUŚ, Dorota DOWNAROWICZ

e-mail: elzbieta.gabrus@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Odwadnianie ciekłego etanolu na adsorbentach zeolitowych

Wstęp

Stopień odwodnienia cieczy decyduje o możliwości zastosowania etanolu jako paliwa, rozpuszczalnika lub reagenta. Etanol może być produkowany z każdego rodzaju cukru zawartego w roślinach. Produkcja obejmuje trzy główne etapy: hydrolizę cukrów wyższych do monomeru glukozy, fermentację glukozy do etanolu i dwutlenku węgla oraz oczyszczanie surowego etanolu, obejmujące odwodnienie alkoholu. Woda jest separowana od alkoholu w procesie destylacji do poziomu stężenia azeotropowego (około 5% objętościowych).

Etanol może być również odzyskiwany w instalacjach oczyszczania powietrza w systemach adsorpcji zmiennotemperaturowej TSA (*Temperature Swing Adsorption*) podczas regeneracji parą wodną. Alkohol ten traktowany jest jako odpad, gdyż zawiera wodę. Ponowne jego użycie wymaga obróbki oczyszczającej, którą można prowadzić metodą adsorpcyjną na zeolitowych sitach molekularnych 3A [*Gabruś i Downarowicz, 2009*]. Adsorbent ten selektywnie adsorbuje wodę z roztworu. Zeolitowe sita molekularne 3A najczęściej stosowane są do adsorpcji wody z fazy gazowej, natomiast niewystarczająco poznane jest zagadnienie jej adsorpcji z fazy ciekłej.

Celem niniejszych badań było określenie równowagi i kinetyki adsorpcji wody z ciekłego alkoholu etylowego na zeolitowych sitach molekularnych 3A. Badania te dostarczają podstawowych danych o procesie, niezbędnych przed przystąpieniem do projektowania kolumnowych systemów adsorpcyjnych.

Opis badań doświadczalnych

Badania równowagi i kinetyki adsorpcji wody z etanolu przeprowadzono w kolbkach umieszczonych w termostacie.

Do roztworu dwuskładnikowego o znanej masie i stężeniu wody wsypywano naważkę adsorbentu. Podczas adsorpcji kolbki były łagodnie wstrząsane w celu wyrównania stężenia roztworu. Okresowo pobierano próbki cieczy do analizy chromatograficznej. Stężenie wody w roztworze *C* malało z czasem *t*.

W rezultacie otrzymano krzywe kinetyczne, a końcowe rezultaty określały równowagę adsorpcji w danej temperaturze. Badania prowadzono w temperaturach 313, 323, 333 K dla stężenia adsorbentu w roztworze C_s w zakresie 59÷158 kg/m³.

Wielkość adsorpcji równowagowej q_e obliczano z bilansu masowego dla każdego pomiaru, uzyskując punkty do krzywej równowagi.

Wyniki i opracowanie

Na podstawie wyników doświadczalnych otrzymano izotermy adsorpcji $q_e = f(c)$, w trzech temperaturach i opisano je równaniem *Langmuira*. Izotermy posłużyły do modelowania kinetyki adsorpcji, a także do weryfikacji wartości równowagowych q_e obliczonych z modeli. Krzywe kinetyczne wykorzystano do określenia wpływu stężenia i temperatury na szybkość procesu i mechanizm adsorpcji, a w rezultacie na wydajności procesu.

Równowaga adsorpcji

Równowaga adsorpcji została opisana na pomocą izotermy *Langmuira* przedstawionej następującym równaniem:

$$q_e = q_0 \frac{K_L C_e}{1 + K_L C_e} \tag{1}$$

gdzie:

 q_e – wielkość adsorpcji równowagowej,

 q_0 i K_L – parametry równania.

Obliczenia parametrów równ. (1) przeprowadzono metodą estymacji nieliniowej w programie *Statistica*, a wyniki zestawiono w tab. 1. Miarą dobrego dopasowania był współczynnik determinacji R^2 bliski jedności.

Tab. 1. Zestawienie wyników obliczeń parametrów izotermy *Langmuira* dla adsorpcji wody z etanolu na zeolitowych sitach molekularnych 3A

T [K]	$q_0 [m g/kg]$	K_L [L/g]	$R^{2}[-]$
313	237,97	0,942	0,997
323	209,15	1,539	0,997
333	166,02	2,806	0,989

Kinetyka adsorpcji

Transport masy podczas adsorpcji z fazy ciekłej przebiega w dwóch zasadniczych etapach: dyfuzji zewnętrznej z cieczy do powierzchni adsorbentu i dyfuzji wewnętrznej w ziarnach adsorbentu.

Do opisu zależności stężenia adsorbatu q od czasu t w badanym układzie wybrano pięć modeli: kinetyki reakcji pseudopierwszorzędowej i pseudodrugorzędowej, dyfuzji wewnątrzcząstkowej [Hameed i in. 2007; Wang i in. 2010], McKaya oraz Urano i Tachikawa [Manohar i in., 2006]. Modele posłużyły do identyfikacji mechanizmu limitującego szybkość procesu.

Model kinetyki reakcji pseudopierwszorzędowej. Model *Lagergrena* przyjmuje postać kinetyki reakcji nieodwracalnej pierwszego rzędu, ale zakłada, że proces adsorpcji jest odwracalny i równowagowy, gdyż wykorzystuje wielkość q_{e} .

$$dq_t/dt = k_1(q_{e1} - q_t) \tag{2}$$

gdzie: q_t – wielkośc adsorpcji w czasie t.

Po scałkowaniu dla warunków granicznych: $t = 0 \div t$ oraz $q_t = 0 \div q_t$ otrzymano:

$$q_t = q_{e1}(1 - e^{-k_1 t}) \tag{3}$$

Wyniki obliczeń parametrów równ. (3) przedstawiono w tab. 2. Zgodność z danymi doświadczalnymi nie była wysoka.

Tab. 2. Zestawienie wyników obliczeń dla modelu kinetyki pseudo-pierwszorzędowej

	313 K				323 K		333 K		
C _s [g/L]	$k_1 \cdot 10^4$ [1/s]	<i>q</i> _{e1} [g/kg]	R^2	$k_1 \cdot 10^4$ [1/s]	<i>q</i> _{e1} [g/kg]	R^2	$k_1 \cdot 10^4$ [1/s]	q_{e1} [g/kg]	R^2
59	0,91	85,2	0,933	1,51	80,3	0,934	2,22	69,8	0,945
79	1,84	114,8	0,921	2,66	88,4	0,941	3,61	79,1	0,932
99	2,10	129,5	0,946	2,85	106,4	0,948	5,56	91,0	0,959
118	2,57	160,2	0,955	3,15	123,2	0,956	6,67	108,8	0,937
138	2,68	172,4	0,934	4,16	131,4	0,923	16,94	127,5	0,944
158	3,23	204,9	0,942	5,45	156,3	0,954	17,97	135,5	0,955

Model kinetyki pseudodrugorzędowej. Model ten opisuje szybkość adsorpcji równaniem kinetyki reakcji nieodwracalnej drugiego rzędu, ale traktuje proces jako odwracalny i bazuje na wielkości równowagowej q_{e} .

$$dq_t/dt = k_2(q_{e2} - q_t)^2$$
(4)

Po scałkowaniu dla warunków: $t = 0 \div t$ oraz $q_t = 0 \div q_t$ otrzymano:

$$q_t = q_{e2}k_2t/(1+q_{e2}k_2t) \tag{5}$$

Wyniki obliczeń parametrów równ. (5) zestawiono w tab. 3. Zgodność uzyskana z danymi doświadczalnymi była wysoka (Rys. 1).

Tab	. 3.	Z	Zestawienie	wyników	obliczeń	dla	model	u	kinetyk	ti pseud	lo-c	lrugorzęc	lowe	j
-----	------	---	-------------	---------	----------	-----	-------	---	---------	----------	------	-----------	------	---

	313 K				323 K		333 K			
C _s [g/L]	$k_1 \cdot 10^6$ [1/s]	<i>q</i> _{e2} [g/kg]	R^2	$k_1 \cdot 10^6$ [1/s]	<i>q</i> _{e2} [g/kg]	R^2	$k_1 \cdot 10^6$ [1/s]	q_{e2} [g/kg]	R^2	
59	1,11	195,4	0,993	2,78	104,8	0,994	2,22	73,0	0,995	
79	1,11	204,1	0,991	2,78	120,2	0,991	3,61	82,6	0,992	
99	1,39	212,8	0,996	3,06	140,1	0,998	5,56	99,0	0,999	
118	2,22	227,3	0,995	3,61	162,9	0,996	6,67	1177	0,997	
138	3,33	232,6	0,994	4,44	181,8	0,993	16,91	144,9	0,994	
158	4,72	238,1	0,992	6,14	200,0	0,994	18,12	178,6	0,995	

Rys. 1. Zestawienie wyników doświadczalnych krzywych kinetycznych z obliczonymi z modelu kinetyki pseudo-drugorzędowej w temperaturze 323 K

Model dyfuzji wewnątrzcząstkowej. W układach adsorpcyjnych etapem limitującym szybkość procesu może być dyfuzja wewnętrzna. Model stosowany jest do identyfikacji mechanizmu dyfuzji na podstawie wykresu linii łamanej (2 lub 3 etapy).

Pierwszy, stromy odcinek odpowiada adsorpcji na powierzchni zewnętrznej ziarna lub etapowi natychmiastowej adsorpcji.

Drugi to etap stopniowej, łagodnej adsorpcji, gdzie dyfuzja wewnątrzcząstkowa jest etapem kontrolującym szybkość całego procesu adsorpcji.

Trzecia część, w końcowych etapie równowagi, gdy wewnątrzcząstkowa dyfuzja zaczyna maleć z powodu bardzo niskich stężeń adsorptywu w roztworze. Początkowa szybkość wewnątrzcząstkowej może być otrzymana przez linearyzację krzywej kinetycznej na wykresie $q_t = f(t^{1/2})$ i określenie wartości współczynnika kinetycznego k.

$$q_t = k\sqrt{t} + A \tag{6}$$

Jak widać na wykresach (Rys. 2) można wyróżnić 3 etapy dyfuzji, a pierwszy odcinek nie przechodzi przez początek układu współrzędnych (parametr *A* jest różny od zera), co wskazuje, że dyfuzja wewnętrzna nie jest jedynym etapem limitującym badany proces adsorpcji z fazy ciekłej.

Rys. 2. Kinetyka dyfuzji wewnątrzcząstkowej dla adsorpcji wody z etanolu na zeolitowych sitach molekularnych 3A w temperaturze 323 K

Model kinetyczny McKay'a. Dyfuzję zewnętrzną, podczas adsorpcji z fazy ciekłej, można opisać współczynnikiem przenoszenia masy ciecz-ciało stałe B_L . Jego wartość można określić na podstawie zmiany stężenia w czasie dla pierwszego etapu adsorpcji za pomocą równania *McKaya*:

$$\ln\left(\frac{C_L}{C_0} - \frac{1}{1 + C_s K_L}\right) = \ln\left(\frac{C_s K_L}{1 + C_s K_L}\right) - \left(\frac{1 + C_s K_L}{C_s K_L}\right) B_L S_S t \tag{7}$$

gdzie:

- C_t stężenie bieżące adsorptywu (31 g/L),
- C_0 stężenie początkowe adsorptywu (0,039 kg/kg),
- K_L stała z równania Langmuira (Tab. 1),
- S_s zewnętrzna powierzchnia adsorbentu odniesiona do objętości roztworu (691 m²/m³).

Wartości współczynnika B_L maleją ze wzrostem temperatury (Tab. 4). **Model kinetyczny Urano i Tachikawa.** Ze względu na porowatą strukturę adsorbentu zakłada się, że wewnątrzcząstkowa dyfuzyjny transport masy jest etapem limitującym szybkość adsorpcji. Współczynnik dyfuzji D_i [m²/s] można określić z liniowej zależności $-\log[1-(q_t/q_e)^2] = f(t)$ dla średnich i długich czasów adsorpcji opisanej równaniem:

$$f\left(\frac{q_t}{q_e}\right) = -\log\left[1 - \left(\frac{q_t}{q_e}\right)^2\right] = \frac{\pi D_i t}{2,303r^2}$$
(8)

gdzie *r* jest promieniem ziarna adsorbentu ($1,36 \cdot 10^{-3}$ m). Obliczone wartości współczynnika D_i maleją ze wzrostem temperatury (Tab. 4).

Tab. 4. Zestawienie współczynników modeli kinetycznych: dyfuzji
wewnątrzcząstkowej, McKay'a oraz Urano i Tachikawy dla $C_s = 118$ g/I

Т	Model dyfuzji wewnątrzcząsteczkowej		Model McKay'a		Model Urano-Tachikawy		
[K]	$\frac{k \cdot 10^6}{[g/g \cdot s^{1/2}]}$	R^2	$\frac{B_L \cdot 10^7}{[\text{m/s}]}$	R^2	$Di \cdot 10^{13}$ [m ² /s]	R^2	$Bi = \frac{B_L r}{D_i}$
313	5,52	0,994	1,39	0,993	4,14	0,997	457
323	5,97	0,993	1,21	0,993	3,50	0,994	470
333	6,17	0,994	1,07	0,992	3,09	0,995	471

Wartość liczby *Biota Bi* (Tab. 4), określającej stosunek oporu dyfuzyjnego w płynie do oporu dyfuzyjnego w ciele stałym, wskazuje na limitujący wpływ dyfuzji wewnętrznej na szybkość procesu adsorpcji w badanym układzie.

Wnioski

Do opisu krzywych kinetycznych adsorpcji wody na zeolitowych sitach molekularnych 3A w temperaturach 313, 323 i 333 K można z dobrym przybliżeniem zastosować model kinetyki pseudodrugorzędowej reakcji. Wartości odpowiednich współczynników kinetycznych rosną ze wzrostem stężenia zawiesiny.

Model dyfuzji wewnątrzcząstkowej, wartości współczynników transportu masy w fazie ciekłej B_L i dyfuzji D_i oraz liczby *Biota* wskazują, że mechanizmem kontrolującym szybkość procesu adsorpcji w badanym układzie jest dyfuzja wewnętrzna. Niemniej jednak opór zewnętrzny transportu masy nie może być pominięty, chociaż jest on znaczący tylko w początkowym okresie czasu.

LITERATURA

- Gabruś E., Downarowicz D., 2009. Obróbka oczyszczająca rozpuszczalników organicznych odzyskiwanych w procesie adsorpcji zmiennotemperaturowej. *Inż. Ap. Chem.*, 48, nr 5, 32-33
- Hameed B.H., Ahmad A.A., Aziz N., 2007. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. *Chem. Eng. J.*, 133, 195–203. DOI:10.1016/j.cej.2007.01.032
- Manohar D.M., Noeline B.F., Anirudhan T.S., 2006. Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. *App. Clay Sci.*, **31**, 194–206. DOI: 10.1016/j.clay.2005.08.008
- Wang L., Zhang J., Zhao R., Li C., Li Y., Zhang C., 2010. Adsorption of basic dyes on activated carbon prepared from *Polygonum orientale* Linn: Equilibrium, kinetic and thermodynamic studies. *Desalination*, **254**, 68–74. DOI: 10.1016/j.desal.2009.12.012