PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Pentamer fragments as green corrosion inhibitors of Al, Fe and Cu metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fragmenty pentamerowe jako zielone inhibitory korozji metali Al, Fe i Cu
Języki publikacji
EN
Abstrakty
EN
Chitosan oligomers can act as green corrosion inhibitors for metals. The effect of the location of the acetyl group in the oligomer on its ability to inhibit the corrosion of the metals Al, Fe, and Cu was studied employing DFT calculations using the B3LYP functional and the 6-31G* (d,p) basis set. Various quantum, polarizability, and reactivity parameters were calculated and used to assess the relative capabilities of the oligomers to inhibit the corrosion of the metals. All of the pentamers were found to have spontaneous chemisorption on the surfaces of the metals. PAG1, the pentamer which has the acetyl group at the end of the chain, had the best reactivity and polarizability parameters of the three pentamers studied, thus making it the most effective corrosion inhibitor of the oligomers.
PL
Oligomery chitozanu mogą działać jako zielone inhibitory korozji metali. Wpływ położenia grupy acetylowej w oligomerze na jego zdolność do hamowania korozji metali Al, Fe i Cu zbadano za pomocą obliczeń DFT z wykorzystaniem funkcjonału B3LYP i zestawu funkcji bazowych 6-31G* (d,p). Różne parametry kwantowe, polaryzowalności i reaktywności zostały obliczone i wykorzystane do oceny względnych zdolności oligomerów do hamowania korozji metali. Stwierdzono, że wszystkie pentamery wykazują spontaniczną chemisorpcję na powierzchniach metali. PAG1, który ma grupę acetylową na końcu łańcucha, charakteryzował się najlepszymi parametrami reaktywności i polaryzowalności spośród trzech analizowanych pentamerów, co czyni go najskuteczniejszym inhibitorem korozji w grupie badanych oligomerów.
Rocznik
Tom
Strony
107--113
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Department of Chemistry, College of Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
  • Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, , Hafr Al-Batin, Saudi Arabia
Bibliografia
  • [1] V. S. Sastri. 2011. Green Corrosion Inhibitors: Theory and Practice. New York: John Wiley and Sons.
  • [2] A. E. Vázquez, M. A. Cervantes Robles, G. E. Negrón Silva, F. J. Rodríguez Gómez, M. P. Pardavé, L. Lomas Romero, D. A. Beltrán, D. P. Martínez. 2019. “Carbohydrates as Corrosion Inhibitors of API 5L X70 Steel Immersed in Acid Medium.” International Journal of Electrochemical Science 14(9): 9206–9220. DOI: 10.20964/2019.09.57.
  • [3] U. Eduok. 2021. Carbohydrates Used as Corrosion Inhibitors. In: Ch. M. Hussain, Ch. Verma (eds.). Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications. Washington, DC: American Chemical Society. DOI: 10.1021/bk-2021-1404.ch003.
  • [4] E. Berdimurodov, A. Kholikov, K. Akbarov, D.K. Verma, R. Sahu, M. Rbaa, O. Dagdag, R. Haldhar. 2023. Carbohydrates as Green Corrosion Inhibitors. In: C. Verma, D. K. Verma (eds.). Handbook of Biomolecules. Amsterdam: Elsevier. DOI: 10.1016/B978-0-323-91684-4.00021-9.
  • [5] J. Haque, M. A. Quraishi. 2022. Carbohydrates and Their Derivatives as Corrosion Inhibitors. In: C. Verma, C. M. Hussain, E. E. Ebenso (eds.). Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications. Hoboken, NJ: John Wiley and Sons. DOI: 10.1002/9781119794516.ch11.
  • [6] I. G. A. Arwati, E. H. Majlan, S. Alva, W. Muhammad. 2022. “Effect of Chitosan on the Corrosion Inhibition for Aluminium Alloy in H2SO4 Medium.” Energies 15(22): 8511. DOI: 10.3390/en15228511.
  • [7] M. N. El-Haddad. 2013. “Chitosan as a Green Inhibitor for Copper Corrosion in Acidic Medium.” International Journal of Biological Macromolecules 55: 142–149. DOI: 10.1016/j.ijbiomac.2012.12.044.
  • [8] Q. H. Zhang, N. Xu, Z. N. Jiang, H. F. Liu, G. A. Zhang. 2023. “Chitosan Derivatives as Promising Green Corrosion Inhibitors for Carbon Steel in Acidic Environment: Inhibition Performance and Interfacial Adsorption Mechanism.” Journal of Colloid and Interface Science 640: 1052–1067. DOI: 10.1016/j.jcis.2023.02.141.
  • [9] X. Luo, B. Chen, J. Li, C. Zhou, M. Guo, K. Peng, H. Dai, B. Lan, W. Xiong, Y. Liu. 2024. “Zwitterion Modified Chitosan as a High-Performance Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution.” International Journal of Biological Macromolecules 267(2): 131429. DOI: 10.1016/j.ijbiomac.2024.131429.
  • [10] P. Kong, H. Feng, N. Chen, Y. Lu, S. Li, P. Wang. 2019. “Polyaniline/Chitosan as a Corrosion Inhibitor for Mild Steel in Acidic Medium.” RSC Advances 9(16): 9211–9217. DOI: 10.1039/c9ra00029a.
  • [11] A. A. Aguilar-Ruiz, G. E. Dévora-Isiordia, R. G. Sánchez-Duarte, Y. Villegas- -Peralta, V. M. Orozco-Carmona, J. Álvarez-Sánchez. 2023. “Chitosan- -Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater.” Coatings 13(9): 1615. DOI: 10.3390/coatings13091615.
  • [12] M. Erna, H. Herdini, D. Futra. 2019. “Corrosion Inhibition Mechanism of Mild Steel by Amylose-Acetate/Carboxymethyl Chitosan Composites in Acidic Media.” International Journal of Chemical Engineering: 8514132. DOI: 10.1155/2019/8514132.
  • [13] M. Srivastava, S. K. Srivastava, G. Ji Nikhil, R. Prakash. 2019. “Chitosan Based New Nanocomposites for Corrosion Protection of Mild Steel in Aggressive Chloride Media”. International Journal of Biological Macromolecules 140: 177–187. DOI: 10.1016/j.ijbiomac.2019.08.073.
  • [14] K. A. Abu-Sbeih, G. M. Al-Mazaideh, W. A. Al-Zereini. 2022. “Production of Medium-Sized Chitosan Oligomers Using Molecular Sieves and Their Antibacterial Activity.” Carbohydrate Polymers 295: 119889. DOI: 10.1016/j.carbpol.2022.119889.
  • [15] K. A. Ibrahim, B. I. El-Eswed, K. A. Abu-Sbeih, T. A. Arafat, M. M. H. Al Omari, F. H. Darras, A. A. Badwan. 2016. “Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent.” Marine Drugs 14(8): 43. DOI: 10.3390/md14080043.
  • [16] G. M. Al-Mazaideh, K. A. Abu-Sbeih, S. M. Khalil. 2017. “Computational Calculations of Chitosan Fragments as Corrosion Inhibitors of Metals.” Journal of Chemical, Biological and Physical Sciences, Section A: Chemical Sciences 7(2): 398–409.
  • [17] G. Gece. 2008. “The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies.” Corrosion Science 50(11): 2981–2992. DOI: 10.1016/j.corsci.2008.08.043.
  • [18] S. M. Khalil, E. E. Ali-Shattle, M. N. Ali. 2013. “A Theoretical Study of Carbohydrates as Corrosion Inhibitors of Iron.” Zeitschrift für Naturforschung A 68(8– 9): 581–586. DOI: 10.5560/zna.2013-0037.
  • [19] S. M. Khalil, G. M. Al-Mazaideh, N. M. Ali. 2016. “DFT Calculations on Corrosion Inhibition of Aluminum by Some Carbohydrates.” International Journal of Biochemistry Research and Review 14(2): IJBCRR.29288.
  • [20] G. M. Al-Mazaideh. 2017. “Carbohydrates as Green Corrosion Inhibitors of Copper: Ab initio Study.” Jordan Journal of Chemistry 12(4): 189–200.
  • [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. 2009. Gaussian 09. Wallingford, CT: Gaussian.
  • [22] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. De Jong. 2010. “NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations.” Computer Physics Communications 181(9): 1477−1489. DOI: 10.1016/j.cpc.2010.04.018.
  • [23] E. S. H. El Ashry, A. El Nemr, S. A. Esawy, S. Ragab. 2006. “Corrosion Inhibitors: Part II: Quantum Chemical Studies on the Corrosion Inhibitions of Steel in Acidic Medium by Some Triazole, Oxadiazole and Thiadiazole Derivatives.” Electrochimica Acta 51(19): 3957–3968. DOI: 10.1016/j.electacta.2005.11.010.
  • [24] G. Gece, S. Bilgiç. 2009. “Quantum Chemical Study of Some Cyclic Nitrogen Compounds as Corrosion Inhibitors of Steel in NaCl Media.” Corrosion Science 51(8): 1876–1878. DOI: 10.1016/j.corsci.2009.04.003.
  • [25] R. G. Parr, L. von Szentpály, S. Liu. 1999. “Electrophilicity Index.” Journal of the American Chemical 121(9): 1922–1924. DOI: 10.1021/ja983494x.
  • [26] T. Arslan, F. Kandemirli, E. E. Ebenso, I. Love, H. Alemu. 2009. “Quantum Chemical Studies on the Corrosion Inhibition of Some Sulphonamides on Mild Steel in Acidic Medium.” Corrosion Science 51(1): 35–47. DOI: 10.1016/j.corsci.2008.10.016.
  • [27] R. G. Pearson. 1988. “Absolute Electronegativity and Hardness: Application to Inorganic Chemistry.” Inorganic Chemistry 27: 734–740. DOI: 10.1021/ic00277a030.
  • [28] I. Lukovits, E. Kálmán, F. Zucchi. 2001. “Corrosion Inhibitors – Correlation between Electronic Structure and Efficiency.” Corrosion 57(1): 3–8. DOI: 10.5006/1.3290328.
  • [29] K. P. Singh, A. Malik, S. Sinha, P. Ojha. 2008. “Liquid-Phase Adsorption of Phenols Using Activated Carbons Derived from Agricultural Waste Material.” Journal of Hazardous Materials 150(3): 626–641. DOI: 10.1016/j.jhazmat.2007.05.017.
  • [30] N. Betti, A. A. Al-Amiery, W. K. Al-Azzawi, W. N. R. W. Isahak. 2023. “Corrosion Inhibition Properties of Schiff Base Derivative against Mild Steel in HCl Environment Complemented with DFT Investigations.” Scientific Reports 13(1): 8979. DOI: 10.1038/s41598-023-36064-w.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d408440-ac92-4253-a3e0-c4816607523e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.