Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that the hyperbolic functions can be associated with self-decomposable distributions (in short: SD probability distributions or Lévy class L of probability laws). Consequently, they admit associated background driving Lévy processes Y (BDLP’s Y). We interpret the distributions of Y (1) via Bessel squared processes, Bessel bridges and local times.
Czasopismo
Rocznik
Tom
Strony
181--190
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
autor
- Laboratoire de Probabilités, Université Pierre et Marie Curie, 175, rue du Chevaleret, 75013 Paris, France
Bibliografia
- [1] L. Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statist. 76, Springer, New York 1992.
- [2] M. Jeanblanc, J. Pitman and M. Yor, Self-similar processes with independent increments associated with Lévy and Bessel processes, Stochastic Process. Appl. 100 (2002), pp. 223-232.
- [3] Z. J. Jurek, Series of independent exponential random variables, in: Proceedings of the 7th Japan-Russia Symposium on Probability Theory and Mathematical Statistics, S. Watanabe, M. Fukushima, Yu. V. Prohorov and A. N. Shiryaev (Eds.), World Scientific, Singapore, New Jersey, 1996, pp. 174-182.
- [4] Z. J. Jurek, Selfdecomposability: an exception or a rule?, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 51 (1997), pp. 93-107. (A special volume dedicated to Professor Dominik Szynal).
- [5] Z. J. Jurek, Remarks on the selfdecomposability and new examples, Demonstratio Math. 34 (2) (2001), pp. 241-250. (A special volume dedicated to Professor Kazimierz Urbanik).
- [6] Z. J. Jurek and J. D. Mason, Operator Limit Distributions in Probability Theory, Wiley, New York 1993.
- [7] P. Lévy, Wener's random functions, and other Laplacian random functions, in: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley 1951, pp. 171-178.
- [8] M. Loève, Probability Theory, D. van Nostrand Co., Princeton, New Jersey, 1963.
- [9] J. Pitman and M. Yor, Bessel processes and infinite divisible laws, in: Stochastic Integrals; Proceedings of the LMS Durham Symposium 1980, Lecture Notes in Math. 851 (1981), pp. 285-370.
- [10] J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrscheinlichkeistheorie verw. Gebiete 59 (1982), pp. 425-457.
- [11] J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55 (2) (2003), pp. 292-330.
- [12] J. Pitman and M. Yor, Hitting, occupation and local times of one-dimensional diffusions: martingale and excursion approaches, Bernoulli 9 (1) (2003a), pp. 1-24.
- [13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer, Berlin-Heildelberg 1999.
- [14] M. Wenocur, Brownian motion with quadratic killing and some implications, J. Appl. Probab. 23 (1986), pp. 893-903.
- [15] M. Yor, Sur certaines fonctionnelles exponentielles du mouvement Brownien reel, J. Appl. Probab. 29 (1992), pp. 202-208.
- [16] M. Yor, Some Aspects of Brownian Motion, Part I: Some Special Functionals, Birkhäuser, Basel 1992a.
- [17] M. Yor, Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems, Birkhäuser, Basel 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d3ef3a5-68f9-4890-9b0d-4defaeb529a3