Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Considering the significant role of beaches for the sea environment and welfare of coastal communities, a variety of process-based models are applied in order to examine and understand the interaction of hydrodynamic processes with seabed material at different time scales. However, a long-term view of this interaction requires a great amount of computational time. In this work a cost-effective methodology is proposed to surpass this shortcoming and estimate bed level evolution. The technique is relied on an objective criterion to assess spectral wave time series of wave height, period and direction and identify the wave conditions that contribute to the initiation of sediment movement. After implementing the so-called Shields criterion, the full wave climate is reduced to two classes of representative wave conditions: the over-critical ones, mainly responsible for long-term erosion, and the sub-critical wave conditions. By applying a well-known process-based model, the representative wave conditions are used as input for the wave-current-sediment transport simulation and rates of bed level changes are obtained, on the basis of which the long-term effects of waves on beach erosion are estimated. Taking into account that erosion is a threatening phenomenon along the sandy beaches of Mediterranean Sea, the present method is demonstrated at a sandy coast of Sitia Bay, Crete. The bed levels derived from the proposed methodology and the full time series are compared. The results indicate reasonable agreement at the selected locations with deviations under 7%, and conformity of the tendency of seabed evolution, rendering the new methodology a useful tool.
Czasopismo
Rocznik
Tom
Strony
276--290
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
- School of Naval Architecture & Marine Engineering, National Technical University of Athens, Athens, Greece
- Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece
autor
- School of Naval Architecture & Marine Engineering, National Technical University of Athens, Athens, Greece
Bibliografia
- [1] Alexandrakis, G., Gkionis, G., Petrakis, S., Kozyrakis, G., Kampanis, N. A., 2015. Study for the Effective Management of the Erosion Problem, the Protection and Recasting of the Coastline and the Reduction of Incoming Wave Energy, in the Sitia City Beachfront, and Makri Gialos. Technical Report. Coastal & Marine Research Laboratory (CRL), Institute of Applied & Computational Mathematics — Foundation for Research and Technology, Heracleion, 115 pp. (in Greek).
- [2] Anagnostou, C., Belibassakis, K., Karathanasi, F., 2017. Coastal erosion in the Sitia Crete Bay — rehabilitation of the coast based on nourishment techniques as an alternative to hard work interventions. In: 7th National Conference on Management and Improvement of Coastal Zones, 20-22 November, Athens, 421-430.
- [3] Aouiche, I., Daoudi, L., Anthony, E. J., Sedrati, M., Harti, A., Ziane, E., 2016. The impact of storms in the morphodynamic evolution of a human-impacted semi-sheltered beach (Agadir Bay, Morocco). J. Afr. Earth Sci. 115, 32-47, http://dx.doi.org/10.1016/j.jafrearsci.2015.12.011.
- [4] Belibassakis, K. A., Karathanasi, F. E., 2017. Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia 59 (3), 350-364, http://dx.doi.org/10.1016/j.oceano.2017.04.001.
- [5] Benedet, L., Dobrochinski, J. P. F., Walstra, D. J. R., Klein, A. H. F., Ranasinghe, R., 2016. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng. 112, 69-86, http://dx.doi.org/10.1016/j.coastaleng.2016.02.005.
- [6] Clementi, E., Pistoia, J., Delrosso, D., Mattia, G., Fratianni, C., Storto, A., Ciliberti, S., Lemieux, B., Fenu, E., Simoncelli, S., Drudi, M., Grandi, A., Padeletti, D., Di Pietro, P., Pinardi, N., 2017. A 1/24 degree resolution Mediterranean analysis and forecast modeling system for the Copernicus Marine Environment Monitoring Service. Extended abstract. In: 8th EuroGOOS Conference, Bergen, 27-28.
- [7] Corbella, S., Stretch, D. D., 2012. Predicting coastal erosion trends using non-stationary statistics and process-based models. Coast. Eng. 70, 40-49, http://dx.doi.org/10.1016/j.coasta-leng.2012.06.004.
- [8] Daghigh, H., Khaniki, A. K., Bidokhti, A. A., Habibi, M., 2017. Prediction of bed ripple geometry under controlled wave conditions: wave-flume experiments and MIKE21 numerical simulations. Indian J. Geo Mar. Sci. 46 (3), 529-537, http://nopr.niscair.res.in/handle/123456789/40808.
- [9] Davidson-Arnott, R., 2009. Introduction to Coastal Processes and Geomorphology. Cambridge Univ. Press, Cambridge, 442 pp.
- [10] DHI, 2016. MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic and Transport. Scientific Documentation.
- [11] Dubarbier, B., Castelle, B., Marieu, V., Ruessink, G., 2015. Process-based modeling of cross-shore sandbar behavior. Coast. Eng. 95, 35-50, http://dx.doi.org/10.1016/j.coastaleng.2014.09.004.
- [12] Foteinis, S., Synolakis, C. E., 2015. Beach erosion threatens Minoan beaches: a case study of coastal retreat in Crete. Shore Beach 83 (1), 53-62.
- [13] Fredsøe, J., Deigaard, R., 1992. Mechanics of Coastal Sediment Transport. World Scientific, Singapore, 369 pp.
- [14] Günther, H., Behrens, A., 2012. The WAM model. Validation document Version 4.5.4. Institute of Coastal Research Helmholtz-Zentrum Geesthach (HZG), 92 pp.
- [15] Gad, F. K., Hatiris, G. A., Loukaidi, V., Dimitriadou, S., Drakopoulou, P., Sioulas, A., Kapsimalis, V., 2018. Long-term shoreline displacements and coastal morphodynamic pattern of North Rhodes Island, Greece. Water 10 (7), 849, http://dx.doi.org/10.3390/w10070849.
- [16] Gharibreza, M., Nasrollahi, A., Afshar, A., Amini, A., Eisaei, H., 2018. Evolutionary trend of the Gorgan Bay (southeastern Caspian Sea) during and post the last Caspian Sea level rise. Catena 166, 339-348, http://dx.doi.org/10.1016/j.catena.2018.04.016.
- [17] Hallermeier, R. J., 1980. Sand motion initiation by water-waves — 2 asymptotes. J. Waterw. Port C. Div. 106 (3), 299-318.
- [18] Hallermeier, R. J., 1981. A profile zonation for seasonal sand beaches from wave climate. Coast. Eng. 4 (3), 253-277, http://dx.doi.org/10.1016/0378-3839(80)90022-8.
- [19] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). In: group, J. (Ed.), Hydraulic Engineering Reports. Deutches Hydrographisches Institut, Hamburg, p. 95.
- [20] Karathanasi, F., Belibassakis, K., Anagnostou, C., 2017. Simulation of wave field and sediment transport at the Sitia bay. In: 7th National Conference on Management and Improvement of Coastal Zones, 20-22 November, Athens, 33-42.
- [21] Madsen, O. S., 1994. Spectral wave-current bottom boundary layer flows. In: Coast. Eng.; Proceedings 24th International Conference Coastal Engineering Research Council, American Society of Civil Engineers, Kobe, Japan (1994), 384-398, http://dx.doi.org/10.9753/icce.v24.%p.
- [22] Marine Information Service, 2016. EMODnet Digital Bathymetry (DTM). Marine Information Service, http://dx.doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238.
- [23] Ortiz, A. C., Ashton, A. D., 2016. Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure. J. Geophys. Res. Earth 121 (2), 442-464, http://dx.doi.org/10.1002/2015jf003699.
- [24] Ramakrishnan, R., Agrawal, R., Remya, P. G., NagaKumar, K. C. V., Demudu, G., Rajawat, A. S., Nair, B., Nageswara Rao, K., 2018. Modelling coastal erosion: a case study of Yarada beach near Visakhapatnam, east coast of India. Ocean Coast. Manage. 156, 239-248, http://dx.doi.org/10.1016/j.ocecoaman.2017.08.013.
- [25] Ranasinghe, R., 2016. Assessing climate change impacts on open sandy coasts: a review. Earth-Sci. Rev. 160, 320-332, http://dx.doi.org/10.1016/j.earscirev.2016.07.011.
- [26] Soulsby, R., 1997. Dynamics of Marine Sands: A Manual for Practical Applications. Thomas Telford Publications, London, 249 pp.
- [27] Toimil, A., Losada, I. J., Camus, P., Díaz-Simal, P., 2017. Managing coastal erosion under climate change at the regional scale. Coast. Eng. 128, 106-122, http://dx.doi.org/10.1016/j.coasta-leng.2017.08.004.
- [28] Van Rijn, L. C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, The Netherlands, 690 pp.
- [29] Walstra, D. J. R., Hoekstra, R., Tonnon, P. K., Ruessink, B. G., 2013. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng. 77, 57-70, http://dx.doi.org/10.1016/j.coastaleng.2013.02.001.
- [30] Wiberg, P. L., Sherwood, C. R., 2008. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Comput. Geosci.-UK 34 (10), 1243-1262, http://dx.doi.org/10.1016/j.cageo.2008.02.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d3ecbe8-9deb-451d-9b7c-06837ed9e7c5