PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytochemical analysis of trifoliate orange during fermentation by HPLC–DAD–ESI–MS/MS coupled with multivariate statistical analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the process of fermentation, the chemical compositions of trifoliate orange (Poncirus trifoliate (L). Raf) changed greatly. To provide a completely phytochemical profile, high-performance liquid chromatography-diode array detector-hyphenated with tandem mass spectrometry (HPLC–DAD–ESIMS/ MS) has been successfully applied to screen and identify the unknown constituents of trifoliate orange during fermentation, which make it available for the quality control of fermented products. Multivariate statistical analysis was performed to classify the trifoliate oranges based on the status of fermentation. A total of 8 components were identified among the samples. Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) demonstrated the fermented and unfermented trifoliate oranges were obviously different, an effective and reliable Partial Least Square Discriminate Analysis (PLS-DA) technique was more suitable to provide accurate discrimination of test samples based their different chemical patterns. Furthermore, a permutation validated the reliability of PLS-DA and variable importance plot revealed that the characterized syringing, naringin, and poncirin showed the high ability to distinguish the trifoliate oranges during fermentation. The present investigation could provide detailed information for the quality control and evaluation of trifoliate oranges during the fermentation process.
Rocznik
Strony
371--377
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
autor
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
  • Institute of Marine Biochemistry (IMBC), Vietnam Academic of Science and Technology (VAST), Hong Quoc Viet Cau Giay, Hanoi, Vietnam
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
autor
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
  • College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
Bibliografia
  • 1. Jang, Y.; Kim, E. K.; Shim, W. S. Phytotherapeutic effects of the fruits of Poncirus trifoliata (L.) Raf. on cancer, inflammation, and digestive dysfunction. Phytother. Res. 2018, 32(4), 616–24.
  • 2. Nizamutdinova, I. T.; Jeong, J. J.; Xu, G. H.; Lee, S.-H.; Kang, S. S.; Kim, Y. S.; Chang, K. C.; Kim, H. J. Hesperidin, hesperidin methyl chalone and phellopterin from Poncirus trifoliata (Rutaceae) differentially regulate the expression of adhesion molecules in tumor necrosis factor-a-stimulated human umbilical vein endothelial cells. Int. Immunopharmacol. 2008, 8(5), 670–8.
  • 3. Han, A.-R.; Kim, J.-B.; Lee, J.; Nam, J.-W.; Lee, I.-S.; Shim, C.-K.; Lee, K.-T.; Seo, E.-K. A new flavanone glycoside from the dried immature fruits of Poncirus trifoliata. Chem. Pharm. Bull. 2007, 55(8), 1270–3.
  • 4. Shin, E. M.; Zhou, H. Y.; Xu, G. H.; Lee, S. H.; Merfort, I.; Kim, Y. S. Anti-inflammatory activity of hispidol A 25-methyl ether, a triterpenoid isolated from Ponciri Immaturus Fructus. Eur. J. Pharmacol. 2010, 627(1–3), 318–24.
  • 5. Yi, J.-M.; Kim, M.-S.; Koo, H.-N.; Song, B.-K.; Yoo, Y.-H.; Kim, H.-M. Poncirus trifoliata fruit induces apoptosis in human promyelocytic leukemia cells. Clin. Chim. Acta 2004, 340(1–2), 179–85.
  • 6. Lee, Y.; Kim, D.; Kim, S.; Shin, T.; Kim, H. Antianaphylactic activity of Poncirus trifoliata fruit extract. J. Ethnopharmacol. 1996, 54(2– 3), 77–84.
  • 7. Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Beneficial changes and drawbacks of a traditional fermentation process on chemical composition and antinutritional factors of yellow maize (Zea mays). J. Biol. Sci. 2005, 5(5), 590–6.
  • 8. Zhang, Z.; Lei, Z.; Yun, L.; Zhongzhi, L.; Chen, Y. Chemical composition and bioactivity changes in stale rice after fermentation with Cordyceps sinensis. J. Biosci. Bioeng. 2008, 106(2), 188–93.
  • 9. Folch-Fortuny, A.; Prats-Montalbán, J. M.; Cubero, S.; Blasco, J.; Ferrer, A. VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics Intellig. Lab. Syst. 2016, 156, 241–248.
  • 10. Zhu, J.; Yi, X.; Huang, P.; Chen, S.; Wu, Y. Drug-protein binding of Danhong injection and the potential influence of drug combination with aspirin: Insight by ultrafiltration LC–MS and molecular modeling. J. Pharm. Biomed. Anal. 2017, 134, 100–7.
  • 11. Tundis, R.; Bonesi, M.; Sicari, V.; Pellicanò, T.; Tenuta, M.; Leporini, M.; Menichini, F.; Loizzo, M. Poncirus trifoliata (L.) Raf.: Chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J. Funct. Foods 2016, 25, 477–485.
  • 12. Liu, S.; Hu, L.; Jiang, D.; Xi, W. Effect of post-harvest LED and UV light irradiation on the accumulation of flavonoids and limonoids in the segments of Newhall navel oranges (Citrus sinensis Osbeck). Molecules 2019, 24(9), 1755.
  • 13. Shi, Z.; Li, T.; Liu, Y.; Cai, T.; Yao, W.; Jiang, J.; He, Y.; Shan, L. Hepatoprotective and Anti-oxidative effects of total flavonoids from Qu Zhi Qiao (Fruit of Citrus Paradisi cv. Changshanhuyou) on nonalcoholic steatohepatitis in vivo and in vitro through Nrf2-ARE signaling pathway. Front. Pharmacol. 2020, 11, 483.
  • 14. Hussain, S.; Curk, F.; Dhuique-Mayer, C.; Urban, L.; Ollitrault, P.; Luro, F.; Morillon, R. Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Sci Hortic-Amsterdam 2012, 134, 100–7.
  • 15. Avula, B.; Joshi, V.; Weerasooriya, A.; Khan, I. Liquid chromatography for separation and quantitative determination of adrenergic amines and flavonoids from Poncirus trifoliatus Raf. fruits at different stages of growth. Chromatographia 2005, 62(7–8), 379–83.
  • 16. Wang, H.; Chen, M.; Li, J.; Chen, N.; Chang, Y.; Dou, Z.; Zhang, Y.; Zhuang, P.; Yang, Z. Quality consistency evaluation of Kudiezi injection based on multivariate statistical analysis of the multidimensional chromatographic fingerprint. J. Pharm. Biomed. Anal. 2020, 177, 112868.
  • 17. Bi, Q.; Liu, Q.; Han, S.; Zhang, L.; Xing, L.; Zhang, X.; Wang, Z.; Miao, Y.; Tan, N. An integrated multiple reaction monitoring strategy based on predicted precursor ions and characteristic product ions for global profiling Rubiaceae-type cyclopeptides in three Rubiaspecies. J. Chromatogr. A 2020, 460902.
  • 18. Ao, H.; Wang, J.; Chen, L.; Li, S.; Dai, C. Comparison of volatile oil between the fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides TL Wu et Senjen based on GC-MS and chemometric techniques. Molecules 2019, 24(9), 1663.
  • 19. Al-Saman, M. A.; Abdella, A.; Mazrou, K. E.; Tayel, A. A.; Irmak, S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). J. Food Meas. Charact. 2019, 13(4), 3221–9.
  • 20. Oh, Y.-C.; Jeong, Y. H.; Cho, W.-K.; Gu, M.-J.; Ma, J. Y. Inhibitory effects of palmultang on inflammatory mediator production related to suppression of NF-kB and MAPK pathways and induction of HO-1 expression in macrophages. Int. J. Mol. Sci. 2014, 15(5), 8443–57.
  • 21. Wang, D.-M.; Yang, Y.-J.; Zhang, L.; Zhang, X.; Guan, F.-F.; Zhang, L.-F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2013, 14(3), 5576–86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d36fece-a1df-4855-bb86-9ec6aa39fd2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.