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Abstract 
This paper is devoted to the concept of stability in linear matrix inequalities. Especially to the analysis of 
a bounded stability region for a multivariable 3DOF system. The study is focused on two different, user 
defined, bounded LMI regions where poles are calculated with the use on an algorithm and placed in the left 
half plane of complex variable plane s. It is shown that in the studied case the shape of the region is irrelevant 

compared to the location of region bounds. And more specifically only the active bounds where the poles are 
located on it’s limits are significant to controller operation. 

 
Introduction 

This paper contains basic concepts of robust 

control and more preciselly LMI, Linear Matrix 

Inequalities, which have different than ususall defi-

nitions of stability. In detail, the scope of this paper 
is the study of methods for selecting regions and 

bounds in stability of Linear Matrix Inequalities. 

In the existing literature about LMI regions and 
additional bounds [1, 2, 3] the author has not found 

information on how to find the correct region for  

a specific controlled object. As an attempt to  
answer that question several simulations have been 

made for a multivariable object. The object was 

a model of a training ship “Blue Lady” [4]. The 

study was focused on what influence regions and 
bounds selection has on the control of three ve-

locieties, essential for trajectory control of a ship 

during sailing. The evaluation criteria was based on 
the impact of regions and bounds on the dynamic 

parameters of the controlled object as in [5]. The 

rest of the paper is constructed as follows: chapter 

two introduces basic concepts of stability in linear 
matrix inequalities, followed by chapter three 

which describes selected bounded regions of linear 

stability. Chapter four presents the basic concepts 
of Linear matrix inequality, followed by chapter 

five which presents a short description of a multi-

variable 3DOF system which is a “Blue Lady” ship 

model. Chapter six is the case study with simula-
tions for two selected bounded stability regions and 

their influence on control performance. The filan 

chapter, seven, contains conclusions. 

Stability in LMI 

In automation stability is one of the most basic 

and most frequently addressed concepts. Regardless 

of how automation theorists and practitioners de-
fine stability – one thing is certain – without bring-

ing your controlled system to stability there is no 

automation. The main aim of control is keeping 
your controlled system in such working conditions 

that the output signal corresponds to the input sig-

nal without human intervention, despite the pres-

ence of interference. Before the concept of stability 
for linear matrix inequalities is explained some 

basic definitions of control theory will be brought 

forward first. For the concept of stability in state 
variable models, where it is assumed that unit step 

functions do not exist and only initial values are 

non-zero (x(0) = x0) the state variable equation is 

[6]: 

 AxxtAx
t

tx
 )(

d

)(d
 (1) 

where: x(t) – state variable vector, A  R
nxn

 – linear 
system parameters matrix. 
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Based on definition No. 45 from [6] it was de-

termined that if for point xr, it is true that Axr = 0, 

than for every t  0 that point is called the equilib-
rium point of the system described in equation 1. 

Having defined the equilibrium point of the system 
it is necessary to determine its stability thus the 

reference to definition No. 47 from [6]. 

We call the equilibrium point xr stable if for 
every positive number ε such a number η can be 

found that the system phase trajectory starting in 

point x0 which is inside a sphere with a radius of η, 

will stay inside a sphere, with a radius of ε, for 

every instant t  0. Based on the above, if we have 
an autonomous linear system (without any unit step 

functions) we can determine an autonomous linear 

asymptotically stable system for which all eigen-

values λ1, λ2, ..., λn of system matrix A have a nega-
tive real parts Reλk < 0 for i = 0,...,n. Defining 

of Laypunov function is bound with the deduction 

stating that a single-valued scalar function V(x) 
of state vector x which is continuous with first de-

rivatives towards state variables x1, x2, ..., xn is 

called a Laypunov function in Ω area if: 

‒ that function is positive definite in Ω area, 

which means that V(x)   0 for x ≠ 0 and 
V(0) = 0; 

‒ time derivative t of V(x) function is negative 

definite in Ω area (for x ≠ 0 and V  = 0 only for 

x = 0) 

or negative semi-definite in Ω area (V (x)  0 for 

any x  ). Based on the above theorem a positive 
definite Laypunow function has the form of: 

 PxxxV T)(  (2) 

Combining conditions from basic control  

concepts for linear matrix inequalities with the 

Laypunov function 2 to determine the stability  
condition it must be noted that: 

 xPxPxx
t

xV TT  
d

)(d
 (3) 

Replacing x  = Ax and substituting it to the 

equation we can receive: 

 xPAPAx TT )(   (4) 

It turns out that the necessary and sufficient 
condition for the linear system to be asymptotically 

stable is, based on the Laypunov function (whose 

time derivative is negative for every x ≠ 0), finding 
a positive definite symmetric matrix P (unknown 

variable), which is shown below: 

 0PAPAT   (5) 

The above inequality means that the problem of 

finding a symmetric positive definite matrix P is 

called the feasibility problem. 

Stability of the system with additional 
bounds 

If during linear system x  = Ax study a positive 

definite symmetric matrix P has been found which 

means that P = P
T 0 (based on Laypunov inequal-

ity, see 5) and based on Schur’s compliment we 
receive: 

 0
0

0








 

P

PAPAT
 (6) 

Fulfilling condition 6 determines that eigenval-
ues of matrix A are placed in the left half plane of 

complex variable plane s. Implementing additional 

bounds to the shape of the region has a key influ-
ence on the dynamic properties of the control sys-

tem working in a closed loop with the specified 

controlled object. It is important that the bound is 

a convex set. Let us define a stability region as 
a subset Cstab with the following two properties: 

 








convexisstab

stabstab

C

CC 
 (7) 

Assuming that area C relates to the whole set of 

complex numbers, meaning that s  C and s  is 

a conjugate number to s. Below some examples of 

bounded stability regions are shown [1]: 

a) 01
1 ssCC  

stab  – left half plane of 

complex variable plane s (Fig. 1a); 

b)  rqsCsC  stabstab2  – using Schur’s 

compliment we receive 0












rqs

qsr
left 

half plane of complex variable plane s with 

a circle that has a centre at q and a radius of r 

(Fig. 1b). 

    

Fig. 1. a) Left half plane of complex variable plane s; b) Left 
half plane with a circle, where r – radius of the circle, q – 
center of the circle 

a) b) 
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c)  213 )Re(   sCsC stabstab  – vertical 

stripe described by α1 i α2 using Schur’s com-

pliment we receive 

0
2)(0

02)(

1

2 
















ss

ss
 (Fig. 2a); 

d)  )Im(tan)Re(4 ssCsC  stabstab  – sec-

tor with an angle of flare )2/,0( π  using 

Schur’s compliment we receive  

0
)sin()()cos()(

)cos()()sin()(


















ssss

ssss
 (Fig. 2b). 

 

Fig. 2. a) Vertical stripe described by α1 and α2; b) Left half 
plane with an angle of flare φ sector 

The above conditions can be brought down to 

the following notation: 

  0sQQsPCsC T
stab   (8) 

where: P = P
T
. 

In this paper main focus has been given to com-
paring two regions, one of which was shown on 

figure 1, and the other one is a combination of re-

gions shown on figures 2a and 2b. Regions defined 
in [1, 3, 7, 8] have been tested, which will be de-

scribed later in this paper. 

Linear Matrix Inequalities LMI – 
the principles 

Linear Matrix Inequalities LMI are described by 

canonical form [1, 8, 9]: 

 



m

i

iixFFxF
1

0:)(  (9) 

If for a sequence of true and symmetrical matrices: 

 mFFF ,...,, 10  (10) 

a matrix has the following relation Fi = Fi
T
  R

nxn
 

for i = 0,...,m and a vector is x = [x1, x2, ... xm]
T
R

m
. 

The LMI is related to the feasibility problem 

which comes down to searching for the answer to 

the question whether there exists a solution x to the 

LMI problem in its overall form shown below: 

 0)( xA   (11) 

Where A is the state matrix of the control sys-

tem. In order to create an LMI for a control system 

for the object is necessary to check if the eigenval-

ues of the matrix A of the controlled closed loop 
system are placed in the left half plane of the com-

plex variable plane s (subsection 3). Next the feasi-

bility problem and stability can be checked with the 
Laypunov function (2). After checking the above 

conditions dynamic properties of the control system 

can be designed by pole placement in a specific part 
of the complex variable plane s. A defined plane for 

pole placement was designated Cstab [subsection 

Stability of the system with additional bounds]. 

A multivariable control system MIMO (Multiple 
Input Multiple Output) for controlled system G 

with a transfer matrix is shown in figure 3. 

 

Fig. 3. Structure of a system for tracking set value to synthesize 
a multivariable controller, G – object, R – controller 

 

Fig. 4. Structure of a system for tracking set value to synthesize 
a multivariable regulator, G – object, R – control 

For which the space state equalities are as fol-

lows: 

 





















 wDuDxCz

wDuDxCz

wDuDCxz

wBuBAxx

wu

wu

zwzu

wu

2222



 (12) 

where: A – state matrix with dimensions n  n, B – 

input matrix with dimensions n  r, C – output 

matrix with dimensions m  n, D – direct feedback 

matrix with dimensions m  r, x – state of the sys-

tem with a vector dimension n, w – input signal 
with a vector dimension r, z – output signal, with 

a vector dimension m, measured by sensors. 

a) b) 
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A closed loop system shown in figure 3 or 4 can be 

described with the below space state equations, 

assuming that: 

 xxBBRBAARxu clwclucl  ,,,  (13) 
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
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  (14) 

where: cl – closed, marks vectors and matrices used 

in the description of the closed loop system. Matri-

ces in (14) depend on the structure of the controler, 
used norms and controlled object matrix. After pole 

placement in the left half plane of the complex 

variable plane s further controller synthesis requires 
a description according to a defined standard such 

as H∞ which for LMI is defined as: 

 0

)(

)(
)(

)(












































IDXRDC

DIB

RDCXB
RBAX

XRBA

wu

T
w

T
w

T
uwT

u

u



   

  (15) 

The norm for G system matrix is lesser than the 

scalar variable gamma γ [8] if and only if, and there 

exists a matrix X   0. After calculations, the value 
of variable gamma is an approximation of the upper 

limit of the standard. The H∞ norm, in general, al-
lows to design a controller which will bring control 

signals down to zero as fast as possible. Assuming 

some constant values for γ, based on the analysis of 

the Pareto curve [7], we can approximate values of 
H2 standard which is shown below: 

 0
)(

)(

222

22 












XRDCX

XRDCQ

zu

zu
 (16) 

where: Q – square matrix. The number of signals 
included in the norm affects the size of the matrix. 

Trace of a matrix Tr(Q) is a top estimation of the 

H2 standard if: X = X∞ = X2 and Y = RX, assuming, 

based on the Laypunov condition, that matrix X is 
positive definite we can determine the following 

relation R = Y X
−1

. The value of H2 standard allows 

to minimize the energy of control signal. LMI con-
ditions defined above which are: 

‒ checking if the eigenvalues of matrix A are 
placed in the left half plane of complex variable 

plane s checking if a symmetric matrix of P type 

exists for matrix A; 

‒ determining the area to place poles in a designer 

defined region determining H∞ standard; 
‒ determining H2 standard; 

‒ determining a suboptimal solution for the spe-

cific controlled object are the successive stages 
of space state controller synthesis for a multi-

variable object, which will be explained later in 

this paper. 

Multidimensional object “Blue Lady” ship 
model 

Controller synthesis using linear matrix ine-

qualities is performed for automatic control of 

a multiva-riable system which is the “Blue Lady” 
ship model. The physical ship model named “Blue 

Lady” is used by the Foundation for Safety of 

Navigation and Environment Protection at the Silm 

lake near Ilawa in Poland for training of navigators. 
It is one of the series of 7 various training ships 

exploited on the lake. The ship “Blue Lady” is an 

isomorphous model of a VLCC (Very Large Crude 
Carrier) tanker, built from epoxide resin laminate in 

1:24 scale. It is equipped with battery-fed electric 

drives (main propeller, blade rudder, four thrusters) 

and the control steering post at the stern for two 
persons. The silhouette of the ship is presented in 

figure 5.  

 

Fig. 5. Silhouette of “Blue Lady” with cockpit arrangement and 
GPS antenna 

More details about presented vessel one can find 

in [10]. Finally, the multivariable linear state model 
of the system has the following form: 
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where 0 values denoted canceled channels. The 

coeffcient values of the model parameters were 

obtained as average values from all identification 

experiments. State model coefficients were as  
follows [4]. Controlled object matrix in the form 

presented in (17) and (18) can be inserted to LMI 

matrix description from (13) and (14). A block 
diagram of the controlled system has been pre-

sented in figure 6. 

 

Fig. 6. Block diagram of the controlled system for identifica-
tion process u, v, r – ships velocities, x, y, ψ – ships position 
and course, [ngc, δc]

T vectors – command signals for propulsion 
and steering equipment, [XI, YI, NI]

T vectors – forces and mo-
ments generated by propulsion and steering equipment 

Training ship “Blue Lady”, being the controlled 

system in the considered case, has three input sig-

nals [x, y, p] where x – required force (thrust) in 

the ships longitudinal axis, y – required force 

(thrust) in the ships lateral axis, p – required turn-
ing moment. Taking into consideration the number 

and type of propellers eight command signals for 

propulsion and steering equipment are implemented 
[ngc, δc, ..., αc]. Next [X1, Y1, N1] are forces and 

moments created by propulsion and steering 

equipment, and the three output signals are position 
coordinates x(t), y(t), and the heading ψ(t). It turned 

out during identification process, that three signal 

channels demonstrated weak correlation between 

output and input signals: rvu pyx
ˆ,ˆ,ˆ   . 

Case study 

Linear matrix inequalities, their properties and 
successive stages allow to determine dynamic para-

meters for a space state controller for a multivari-

able controlled object. In this paper one of the steps 

has been shown, which is defining the region in the 
left half plane of the complex variable plane s, to 

achieve control system stability. In LMI zeros and 

poles can be placed in a user defined region. For the 
input and calculation of the above parameters with 

the LMI method the LMI Control Toolbox in Mat-

lab, together with additional toolboxes SeDuMi 

(Self – Dual – Minimization) and YALMIP (Yet 

Another LMI Preprocessor), was used [11, 12]. 

Using the above tools computer simulations have 

been performed that show the influence of region 
selection on control system performance. Detailed 

description of the simulation station can be found in 

[13]. The algorithm implemented in Matlab places 
zeros and poles in an optimal way in the area de-

fined by the user. So the user does not decide on the 

position of zeros and poles of the LMI controller 
directly but only defines the bounds of the required 

region. Nevertheless region selection is done on 

empiric trial and error basis, and for the moment, to 

the knowledge of the author, no mathematical 
methods for region shape or size calculation exist to 

achieve optimal controller operation. Below results 

of simulations are presented that show region selec-
tion influence on control quality for longitudinal 

velocity (u), lateral velocity (v) and angular veloc-

ity (r) of “Blue Lady” ship model. The first region 
was defined as a sector with two vertical stripes 

where 1 = −0.54, 2 = −5.54 and the angle  = /3. 

 

Fig. 7. First LMI region 1 = −0.54, 2 = −5.54 and angle 

 = /3  

With the above defined region further steps of 

LMI controller synthesis for multivariable “Blue 
Lady” ship model have been performed. The first 

simulation shows only one constant value which is 

longitudinal velocity u = 0.1 m/s, the dynamics of 
the controller after the maneuver has been per-

formed can be seen on figure 8a. Additionally 

simulations for the same region have been made for 
three constant values of u = 0.1 m/s, v = 0.08 m/s 

and r = –0.3 rad/s, which can be seen on figure 8b. 

Conducted experiments show that the multivariable 

controller, for longitudinal, lateral and angular  
velocities whose poles are placed in the region  

defined as (Fig. 7) is stable and the required veloc-

ity values are obtained after a time of no more than 
200 s.  



Monika Rybczak 

 138 Scientific Journals 39(111) 

And for the above defined region shown in fig-
ure 9 a state space controller has been synthesized 

whose dynamics for the same set values as in the 

previous simulation, has been shown in figure 10. 

The controller whose poles are placed in the re-
gion shown in figure 7 works the same way as the 

one with poles placed in the region shown in figure 

9. It is also stable with the required velocity values 
being obtained after a time of no more than 250 s. 

Next parameters have been calculated by trial 

and error for a region shown in figure 9 where r = 3 

and q = –3.54. 

Conclusions 

Operation of controllers, whose poles are placed 

in regions shown in figures 7 and 9, is the same 
because their parameters and calculated algorithmi-

cally are the same. It is clearly visible that in the 

case of a multivariable controller that is controlling 
ship velocities the key is defining region vertical 

bounds. It is related to the fact that imaginary parts 

of poles calculated algorithmically in the s plane 
are always equal to zero. And as such both in the 

case of a region defined as a section with two verti-

cal bars and as a sphere the user has only defined 

the range, in which real parts of the poles can 

       

Fig. 8. a) given value u = 0.1 m/s – thin line, controlled value – thick line, remaining velocities = 0; b) given values u = 0.1 m/s, 

v = 0.08 m/s and r = –0.3 rad/s – thin line, controlled values – thick line 

       

Fig. 10. a) given value u = 0.1 m/s – thin line, controlled value – thick line, remaining velocities = 0; b) given values u = 0.1 m/s, 
v = 0.08 m/s and r = –0.3 rad/s – thin line, controlled values – thick line 

a) b) 

a) 

b) 

 

Fig. 9. Second LMI region: r = 3, q = –3.54 

 

a) 
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change. This indicates that in the presented LMI 

controller the selection of regions between the one 

shown in figure 7 and the one shown in figure 9 has 

no direct influence on the control of specific pa-
rameters like damping time, sample time or over-

shoot. Changing region bounds, or in other words 

the allowable range of real parts of the poles, on the 
other hand has a significant influence on control 

performance in a closed loop system. Since the 

regions are selected by trial and error it is necessary 
to conduct several simulations. Only then the user 

can decide which region corresponds to all control-

ler parameters from initial design criteria. When 

selecting a region is essential to observe what form 
do the algorithmically calculated poles take and 

which of the bounds is the active one, meaning for 

which of the bounds do the poles take place on its 
limit. The above simulations indicate that modify-

ing the bounds that do not have any influence on 

the algorithmically calculated pole values, the non 
active bounds does not have any influence on the 

operation of the control system. For different mul-

tivariable controlled objects modifying active 

bounds on the other hand has a significant influence 
on the way how the controller behaves. It needs to 

be mentioned that for diffrent controlled objects 

zeros and poles will be located diffrently. So 
a modification of other bounds (eg. angle of flare) 

than in this paper might be key to achieving correct 

results. 
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