PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quantile trends of subhourly extreme rainfall: Marmara Region, Turkey

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global climate change will probably cause intensification of the hydrologic cycle, which can lead to alterations in extreme precipitation properties. In this study, we investigated the trend of 5-, 10-, 15-, and 30-min annual maximum rainfall series at 12 stations in the Marmara Region, Turkey, using quantile regression. The data ranges were from 46 to 71 years long. Five quantiles were used to examine the extreme rainfall series, and their quantile regression parameters were calculated. The results show that quantile regression is a powerful tool to compute trends with a more inferential context, which was validated with the notable differences between the trends at chosen quantiles and the classical ordinary least squares method. Concerning the problem of the analysis of climate trends, the quantile regression method seems to provide a perspective from a more detailed understanding of processes in the climate system in terms of characteristics of climate variability and extremity.
Czasopismo
Rocznik
Strony
2453--2473
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Department of Civil Engineering, Faculty of Engineering and Architecture, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey
Bibliografia
  • 1. Abbasnia M, Toros H (2018) Analysis of long-term changes in extreme climatic indices: a case study of the Mediterranean climate, Marmara Region, Turkey. Pure Appl Geophys 175:3861–3873. https://doi.org/10.1007/s00024-018-1888-8
  • 2. Abbasnia M, Toros H (2020) Trend analysis of weather extremes across the coastal and non-coastal areas (case study: Turkey). J Earth Syst Sci 129:1–13. https://doi.org/10.1007/s12040-020-1359-3
  • 3. Amini M, Ghadami M, Fathian F, Modarres R (2020) Teleconnections between oceanic: atmospheric indices and drought over Iran using quantile regressions. Hydrol Sci J 65:2286–2295
  • 4. Aziz R, Yucel I (2021) Assessing nonstationarity impacts for historical and projected extreme precipitation in Turkey. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03503-x
  • 5. Baltaci H (2019) Spatiotemporal variability of climate extremes in the Marmara Region (NW Turkey). Int J Glob Warm 18(3/4):239–252
  • 6. Barbosa SM (2008) Quantile trends in Baltic Sea level. Geophys Res Lett 35:L22704. https://doi.org/10.1029/2008GL035182
  • 7. Dabanlı İ, Şen Z, Yeleğen MÖ, Şişman E, Selek B, Güçlü YS (2016) Trend assessment by the innovative-Şen method. Water Resour Manag 30(14):5193–5203
  • 8. Demircan M, Gürkan H, Eskioğlu O, Arabacı H, Coşkun M (2017) Climate change projections for Turkey: three models and two scenarios. Turk J Water Sci Manag 1(1):22–43. https://doi.org/10.31807/tjwsm.297183
  • 9. Donat M, Lowry A, Alexander L et al (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 6:508–513. https://doi.org/10.1038/nclimate2941
  • 10. Gandini A, Garmendia L, Prieto I, Álvarez I, San-José J (2020) A holistic and multi-stakeholder methodology for vulnerability assessment of cities to flooding and extreme precipitation events. Sustain Cities Soc 63:102437
  • 11. Gao N, Ma Y, Zhao M, Zhang L, Zhan H, Cai S, He Q (2020) Quantile analysis of long-term trends of near-surface chlorophyll: a in the pearl river plume. Water 12(6):1662. https://doi.org/10.3390/w12061662
  • 12. Hosseinzadehtalaei P, Tabari H, Willems P (2020) Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J Hydrol 590:125249
  • 13. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London
  • 14. Koenker RW (2005) Quantile regression. Cambridge University Press, Cambridge
  • 15. Koenker R (2021) Quantreg: Quantile Regression. R package version 5.86. https://CRAN.R-project.org/package=quantreg
  • 16. Koenker RW, Bassett G Jr (1978) Regression quantiles. Econometrica 46:33–50. https://doi.org/10.2307/1913643
  • 17. Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15:143–156
  • 18. Li-jun F (2014) Quantile trends in temperature extremes in China. Atmos Ocean Sci Lett 7:304–308
  • 19. Lolis CJ, Türkeş M (2016) Atmospheric circulation characteristics favouring extreme precipitation in Turkey. Clim Res 71:139–153. https://doi.org/10.3354/cr01433
  • 20. Malik N, Bookhagen B, Mucha PJ (2016) Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophys Res Lett 43:1710–1717. https://doi.org/10.1002/2016GL067841
  • 21. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171
  • 22. Mohsenipour M, Shahid S, Ziarh GF et al (2020) Changes in monsoon rainfall distribution of Bangladesh using quantile regression model. Theor Appl Climatol 142:1329–1342. https://doi.org/10.1007/s00704-020-03387-x
  • 23. Myhre G, Alterskjær K, Stjern CW, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A (2019) Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9:16063. https://doi.org/10.1038/s41598-019-52277-4
  • 24. Oruc S (2021) Visual and statistical inference of hourly and sub-hourly extreme rainfall trends Central Anatolia, Turkey case. Acta Geophys. https://doi.org/10.1007/s11600-020-00512-2
  • 25. Pumo D, Noto L (2021) Exploring the linkage between dew point temperature and precipitation extremes: a multi-time-scale analysis on a semi-arid Mediterranean region. Atmos Res 254:105508
  • 26. Sarış F (2020) The spatial pattern of selected extreme precipitation indices for Turkey (1975–2012). Bull Geogr Phys Geogr Ser 19(1):19–30. https://doi.org/10.2478/bgeo-2020-0007
  • 27. Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng 17:1042–1046
  • 28. Şenocak S, Emek M (2019) Evaluation of monthly precipitation amount in Eastern Anatolia region by using trend analysis methods. Avrupa Bilim Ve Teknoloji Dergisi 17:807–822. https://doi.org/10.31590/ejosat.646266
  • 29. Sensoy S, Türkoğlu N, Akçakaya A, Ulupınar Y, Ekici M, Demircan M, Atay H, Tüvan A, Demirbaş H (2013) Trends in Turkey climate indices from 1960 to 2010. In: 6th atmospheric science symposium, 24–26 Apr 2013. ITU, Istanbu
  • 30. Serencam U (2019) Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arab J Geosci 12(23):1–9
  • 31. Shiau J, Huang W (2015) Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression. J Hydro-Environ Res 9:368–380
  • 32. Şişman E, Kizilöz B (2021) The application of piecewise ITA method in Oxford, 1870–2019. Theor Appl Climatol 145:1451–1465. https://doi.org/10.1007/s00704-021-03703-z
  • 33. Srivastava A, Grotjahn R, Ullrich P (2020) Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather Clim Extremes 29:100268
  • 34. Sterin AM, Lavrov AS (2020) On long period trend estimates of upper-air extreme and sub-extreme temperatures by use of quantile regression. IOP Conf Ser Earth Environ Sci 611:012043
  • 35. Tabari H, Madani K, Willems P (2020) The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environ Res Lett 15:104077
  • 36. Taylan D, Aydın T (2018) The trend analysis of lakes region precipitation data in Turkey. Cumhur Sci J 39(1):258–273. https://doi.org/10.17776/csj.406271
  • 37. Tharu B, Dhakal N (2020) On the use of Bayesian quantile regression method to explore the historical trends in extreme precipitation and their connections with large-scale climate patterns over the contiguous USA. Theoret Appl Climatol 139:1277–1290
  • 38. Toros H, Abbasnia M (2017) Trend analysis of extreme temperature indices for Marmara region of Turkey. In: The 8th atmospheric sciences symposium—ATMOS 2017, Istanbul, Turkey
  • 39. Tosunoğlu F (2017) Trend analysis of daily maximum rainfall series in Çoruh Basin, Turkey. J Inst Sci Technol 7(1):195–205
  • 40. Treppiedi D, Cipolla G, Francipane A, Noto LV (2021) Detecting precipitation trend using a multiscale approach based on quantile regression over a Mediterranean area. Int J Climatol. https://doi.org/10.1002/joc.7161
  • 41. TSMS (Turkish State Meteorological Service) (2021a) State of the climate in Turkey in 2020. Turkish State Meteorological Service
  • 42. TSMS (Turkish State Meteorological Service) (2021b) 2020 Yili Yağiş Değerlendirmesi (in Turkish). Turkish State Meteorological Service
  • 43. Türkeş M, Koç T, Sariş F (2009) Spatiotemporal variability of precipitation total series over Turkey. Int J Climatol 29:1056–1074. https://doi.org/10.1002/joc.1768
  • 44. Uranchimeg S, Kwon H, Kim B, Kim T (2020) Changes in extreme rainfall and its implications for design rainfall using a Bayesian quantile regression approach. Hydrol Res 51:699–719
  • 45. Vaheddoost B (2020) A comparison of several methods in tracking short-term trends associated with the precipitation time series. Uludağ Univ J Fac Eng 25(1):153–168. https://doi.org/10.17482/uumfd.656175
  • 46. Wasko C, Sharma A (2014) Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour Res 50:3608–3614. https://doi.org/10.1002/2013WR015194
  • 47. Yurtseven I, Serengil Y (2017) Changes and trends of seasonal total rainfall in the province of Istanbul, Turkey. J Fac For Istanb Univ 67(1):1–12. https://doi.org/10.17099/jffiu.30673
  • 48. Zhang S, Gan TY, Bush A (2020) Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. J Clim 33:4009–4025
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d317d07-c45f-427b-82d7-4a95fdbba653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.