PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For conventional diesel engines, two of the most widely used global correlations are due to Woschni and Hohenberg. Besides, the modern diesel engines used a new heat transfer coefficient correlation was proposed by Finol and Robinson. In Vietnam, improving engine power density is a trend of improving non-turbocharged base engines by using a supercharging system with exhaust gas energy recovery. Increasing engine power by the turbocharger is limited for two reasons: mechanical stress and thermal stress of the components surrounding the combustion chamber. In general, the heat transfer coefficient has a major effect on heat transfer rate, especially during the combustion process. So, the purpose of this study is to compare the cylinder distribution results from the simulation using the equations of Woschni and Hohenberg and compare to the experiment results when converting an old heavy-duty engine into a turbocharged engine. Results show that the cylinder distribution using Hohenberg’s correlation has a good agreement with the experiment results, especially in the case of a turbocharged engine.
Rocznik
Strony
159--172
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Phenikaa University, Faculty of Vehicle and Energy Engineering, Yen Nghia Ward, Ha-Dong District, Hanoi 12116, Vietnam
  • Phenikaa Research and Technology Institute, A&A Green Phoenix Group JSC, 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
Bibliografia
  • [1] Caton J.A.: An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. Wiley, 2016.
  • [2] Kurowski M.: Heat transfer coefficient measurements on curved surfaces. Arch. Thermodyn. 42(2021), 2, 155–170.
  • [3] Nusselt W.: Der Warmeubergang in der Verbrennungskrafmaschine. V.D.I. Forschungsheft 264(1923).
  • [4] Annand W.J.D.: Heat transfer in the cylinders of reciprocating internal combustion engines. P.I. Mech. Eng. 177(1963), 36, 973–996.
  • [5] Eichelberg G.: Some new investigations on old combustion engine problems. Engineering 148(1939), 463–466, 547–550.
  • [6] Woschni G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Transactions 76(1967), 670931, 3065–3083.
  • [7] Hohenberg G.F.: Advanced approaches for heat transfer calculations. SAE Tech. Pap. 790825(1979).
  • [8] Finol C.A., Robinson K.: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. P.I. Mech. Eng. D-J. Aut. 220(2006), 12, 1765–1781.
  • [9] Finol C.A., Robinson K.: Thermal modelling of modern diesel engines: proposal of a new heat transfer coefficient correlation. P.I. Mech. Eng. D-J. Aut. 225(2011), 11, 1544–1560.
  • [10] Parra C.A.F.: Heat transfer investigations in a modern diesel engine. PhD thesis, Univ. Bath, Bath 2008.
  • [11] Hiereth H., Prenninger P.: Charging the Internal Combustion Engine. Springer, Wien New York 2007.
  • [12] Pan M., Qian W., Wei H., Feng D., Pan J.: Effects on performance and emissions of gasoline compression ignition engine over a wide range of internal exhaust gas recirculation rates under lean conditions. Fuel 265(2020), 116881.
  • [13] Trung K.N.: A Study for determination of the pressure ratio of the V12 diesel engine based on the heat flow density to cooling water. In: Advances in Engineering Research and Application. (K.U. Sattler., D.C. Nguyen, N.P. Vu, B.T. Long., H. Puta, Eds.), Proc. ICERA 2020, Lecture Notes in Networks and Systems, Vol. 178, Springer, 2021, 64–74.
  • [14] Thompson M.K., Thompson J.M.: ANSYS Mechanical APDL for Finite Element Analysis. Butterworth-Heinemann, 2017.
  • [15] Trung K.N.: The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. J. Therm. Eng. 7(2021), 2 (Spec. iss.),
  • [16] Heywood J.B.: Internal Combustion Engine Fundamentals (2nd Edn.). McGraw- Hill Education, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d28e983-4cd7-4527-bf50-aa5b972236d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.