PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comprehensive Study of the Electrostatic Discharge Sensitivity and Chargeability of Tris(carbohydrazide)zinc Perchlorate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most primary explosives are non-conductors, easily accumulate charge when contacting with and separating from other materials, and are sensitive to electrostatic discharge (ESD). In order to reduce the number of accidents caused by ESD initiation of primary explosives, studies on their electrostatic hazards are necessary. This work presents comprehensive experimental results of electrostatic discharge sensitivity and chargeability of tris(carbohydrazide)zinc perchlorate (ZnCP) under different conditions. The influences of the testing conditions, of devices, particle size, ambient temperature and relative humidity on the electrostatic discharge sensitivity and chargeability have been investigated in detail, and the quantitative regression equations obtained.
Rocznik
Strony
553--573
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • Laboratory for High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
  • China Academy of Launch Vehicle Technology, Beijing 100076, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
Bibliografia
  • [1] Ma C.Q., Zhao S.L., Huang G., Anti-static Charge Character of the Plasma Treated Polyester Filter Fabric, J. Electrostat., 2010, 68(2), 111-115.
  • [2] Thomas S.W., Vella S.J., Kaufman G.K., Whitesides G.M., Patterns of Electrostatic Charge and Discharge in Contact Electrification, Angew. Chem. Int. Ed., 2008, 47(35), 6654-6656.
  • [3] Liao C.C., Hsiau S.S., Huang T.Y., The Effect of Vibrating Conditions on the Electrostatic Charge in a Vertical Vibrating Granular Bed, Powder Technol., 2011, 208(1), 1-6.
  • [4] Lacks D., Duff N., Kumar S., Nonequilibrium Accumulation of Surface Species and Triboelectric Charging in Single Component Particulate Systems, Phys. Rev.Lett., 2008, 100(18), 188305(1-4).
  • [5] Janes A., Chaineaux J., Carson D., LeLore P.A., MIKE 3 versus HARTMANN Apparatus: Comparison of Measured Minimum Ignition Energy (MIE), J. Hazard. Mater., 2008, 152(1), 32-39.
  • [6] Nomura T., Satoh T., Masuda H., The Environment Humidity Effect on the Tribocharge of Powder, Powder Technol., 2003, 135-136, 43-49.
  • [7] Lu M., Zhao S.X., Chen J., Measurement and Analysis of the Frictional Static Electricity Characteristics of Composite RDX, Chinese J. Energ. Mater., 2008, 16(6), 708-711.
  • [8] LaMarche K.R., Liu X., Shah S.K., Shinbrot T., Glasser B.J., Electrostatic Charging During the Flow of Grains from a Cylinder, Powder Technol., 2009, 195(2), 158-165.
  • [9] Talawar M.B., Agrawal A.P., Anniyappan M., Wani D.S., Bansode M.K., Gore G.M., Primary Explosives: Electrostatic Discharge Initiation, Additive Effect and Its Relation to Thermal and Explosive Characteristics, J. Hazard. Mater., 2006, 137(2), 1074-1078.
  • [10] Keshavarz M.H., Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure, J. Hazard. Mater., 2008, 153(1-2), 201-206.
  • [11] Keshavarz M.H., Pouretedal H.R., Semnani A., Reliable Prediction of Electric Spark Sensitivity of Nitramines: A General Correlation with Detonation Pressure, J. Hazard. Mater., 2009, 167(1-3), 461-466.
  • [12] Turker L., Contemplation on Spark Sensitivity of Certain Nitramine Type Explosives, J. Hazard. Mater., 2009, 169(1-3), 454-459.
  • [13] Zeman S., New Aspects of Initiation Reactivities of Energetic Materials Demonstrated on Nitramines, J. Hazard. Mater., 2006, 132(2-3), 155-164.
  • [14] Bane S.P.M., Shepherd J.E., Kwon E., Day A.C., Statistical Analysis of Electrostatic Spark Ignition of Lean H2/O2/Ar Mixtures, Int. J. Hydrogen Energy, 2011, 36(3), 2344-2350.
  • [15] Yao J., Wang C.H., Granular Size and Shape Effect on Electrostatics in Pneumatic Conveying Systems, Chem. Eng. Sci., 2006, 61(12), 3858-3874.
  • [16] Nifuku M., Katoh H., A Study on the Static Electrification of Powders During Pneumatic Transportation and the Ignition of Dust Cloud, Powder Technol., 2003, 135-136, 234-242.
  • [17] Bates W.D., Kosowski B.M., Gotzmer C., Development of Passivated Pyrophoric Metal Powders (Hafnium and Zirconium) with Reduced Electrostatic Discharge (ESD) Sensitivity, Combus. Energ. Mater., 2002, 1029, 985-993.
  • [18] Yu X.H., Surface Treatment of PETN via Decreasing Static Electricity, Chinese J. Explos. Propellants, 2003, 26(4), 55-56.
  • [19] Hogue M.D., Buhler C.R., Calle C.I., Matsuyama T., Luo W., Groop E.E., Insulator-insulator Contact Charging and Its Relationship to Atmospheric Pressure, J. Electrostat., 2004, 61(3-4), 259-268.
  • [20] Matsusyama T., Yamamoto H., Impact Charging of Particulate Materials, Chem. Eng. Sci., 2006, 61(7), 2230-2238.
  • [21] Sun D.Q., Gao M., Hao X.M., Gao Z.L., Study on the Hazard and Countermeasures of Static Electricity in the Initiating Explosive Device Production, Explosive Materials, 2009, 38(3), 22-24.
  • [22] Li H.J., Ji Z.J., Yang H.L., Discusions on the Safety Technique of Electrostatic in the Field of Initiating and Chemical Engineering, Technology Foundation of National Defence, 2009, 4, 50-53.
  • [23] Cao H.F., Wang G.L., Evaluation of Electrification Safety of Powder Emulsion Explosives, Mining & Metallurgy, 2004, 13(3), 9-12.
  • [24] Bao T., Zhang W., Review on Electrostatic Hazards of Composite Solid Propellant, Chinese J. Energ. Mater., 2010, 18(4), 460-466.
  • [25] Li G.X., Wang C.Y., Comprehensive Study on Electric Spark Sensitivity of Ignitable Gases and Explosive Powders, J. Electrostat., 1982, 11(3), 319-332.
  • [26] Larson T.E., Dimas P., Hannaford C.E., Electrostatic Sensitivity Testing of Explosives at Los-Alamos, Institute of Physics Conference Series, 1991, 118, 107-117.
  • [27] Roux M., Auzanneau M., Brassy C., Electric Spark and ESD Sensitivity of Reactive Solids (Primary or Secondary Explosive, Propellant, Pyrotechnics) Part I: Experimental Results and Reflection Factors for Sensitivity Test Optimization, Propellants Explos. Pyrotech., 1993, 18, 317-324.
  • [28] Auzanneau M., Roux M., Electric Spark and ESD Sensitivity of Reactive Solids (Primary or Secondary Explosive, Propellant, Pyrotechnics) Part II: Energy Transfer Mechanisms and Comprehensive Study on E50, Propellants Explos. Pyrotech., 1995, 20, 96-101.
  • [29] Darin S., Douglas O., Andrew B.B., Electrostatic Discharge Ignition of Energetic Materials, Propellants Explos. Pyrotech., 1998, 23, 34-42.
  • [30] Hammant B.L., Sumner J.F., Wyatt R.M.H., Assessing the Electrostatic Behaviour of Clothing for Use in an Explosive Environment, J. Electrostat., 1981, 10, 343-350.
  • [31] Sumner J.F., Ignition of Primary Explosives by Electrostatic Discharges, DECHEMA Monographien, 1974, 72(1370-1409), 409-417.
  • [32] Cleves A.C., Sumner J.F., Wyatt R.M.H., Effect of Temperature and Relative Humidity on the Accumulation of Electrostatic Charges on Fabrics and Primary Explosives, Static Elec., Proc. Conf., 3rd, 1971, 226-233.
  • [33] Wyatt R.M.H., Moore P.W.J., Adams G.K., Sumner J.F., The Ignition of Primary Explosives by Electric Discharges, Proc. Royal Soc. London, Series A, Mat. and Phys. Sciences, 1958, 246, 189-196.
  • [34] Raha K., Chhabra J.S., Static Charge Development on Explosives, Def. Sci. J., 1991, 41(1), 21-25.
  • [35] Raha K., Chhabra J.S., Static Charge Development and Impact Sensitivity of High Explosives, J. Hazard. Mater., 1993, 34(3), 385-391.
  • [36] Wojewodka A., Belzowski J., Wilk Z., Stas J., Energetic Characteristics of Transition Metal Complexes, J. Hazard. Mater., 2009, 171(1-3), 1175-1177.
  • [37] Talawar M.B., Agrawal A.P., Chhabra J.S., Ghatak C.K., Asthana S.N., Rao K.U.B., Studies on Nickel Hydrazinium Nitrate (NHN) and Bis-(5-nitro-2H tetrazolato-N2) Tetraamino Cobalt(III) Perchlorate (BNCP): Potential Lead-free Advanced Primary Explosives, J. Sci. Ind. Res., 2004, 63(8), 677-681.
  • [38] Blachowski T.J., Burchett J., Ostrowski P.P., U.S. Navy Characterization of Two Energetic Materials, CP and BNCP, 38th AIAA Joint Propulsion Conference & Exhibit, Indianapolis, 2002, 7-10 July.
  • [39] Shang J., Zhang J.G., Zhang T.L., Huang H.S., Zhang S.W., Shu Y.J., Theoretical Study of Energetic Complexes (III): Bis-(5-nitro-2H-tetrazolato-N-2)tetraammine Cobalt(III) Perchlorate (BNCP) and Its Transition Metal (Ni/Fe/Cu/Zn) Perchlorate Analogues, Chinese J. Energ. Mater., 2012, 30(7), 1624-1630.
  • [40] Talawar M.B., Agrawal A.P., Asthana S.N., Energetic Co-ordination Compounds: Synthesis, Characterization and Thermolysis Studies on Bis-(5-nitro-2Htetrazolato-N-2)tetraammine Cobalt(III) Perchlorate (BNCP) and Its New Transition Metal (Ni/Cu/Zn) Perchlorate Analogues, J. Hazard. Mater., 2005, 120(1-3), 25-35.
  • [41] Cui Y., Zhang J.G., Zhang T.L., Yang L., Zhang J., Hu X.C., Synthesis, Structural Investigation, Thermal Decomposition Mechanism and Sensitivity Properties of an Energetic Compound [Cd(DAT)6](ClO4)2 (DAT = 1,5-diaminotetrazole), J. Hazard. Mater., 2008, 160(1), 45-50.
  • [42] Shang J., Zhang J.G., Cui Y., Zhang T.L., Shu Y.J., Yang L., Synthesis, Crystal Structure, and Properties of an Energetic Compound [Zn(1,5-diaminotetrazole)6] (ClO4)2, Acta Chim. Sinica, 2010, 68(3), 233-238.
  • [43] Qi S.Y., Li Z.M., Zhou Z.N., Cu Y.I, Zhang G.T., Zhang T.L., Zhang J.G., Yang L., Crystal Structure, Thermal Decomposition Behaviours and Sensitivity Properties of a Novel Energetic Compound [Co(DAT)6] (ClO4)2, Chinese J. Energ. Mater., 2011, 29(1), 59-64.
  • [44] Qi S.Y., Zhang J.G., Zhang T.L., Cui Y., Yang L., Yu K. B., Shu Y.J., Synthesis, Crystal Structure, Thermal Behaviour and Sensitivity Properties of New Energetic Compound [Mn(DAT)6](ClO4)2, Chem. J. Chinese U., 2009, 30(10), 1935-1939.
  • [45] Li Z.M., Zhou Z.N., Zhang T.L., Tang Z., Yang L., Zhang J.G., Energetic Transition Metal (Co/Cu/Zn) Imidazole Perchlorate Complexes: Synthesis, Structural Characterization, Thermal Behavior and Non-isothermal Kinetic Analyses, Polyhedron, 2012, 44(1), 59-65.
  • [46] Singh G., Felix S.P., Pandey D.K., Studies on Energetic Compounds – Part 37: Kinetics of Thermal Decomposition of Perchlorate Complexes of some Transition Metals with Ethylenediamine, Thermochim. Acta, 2004, 411(1), 61-71.
  • [47] Huang H.S., Zhang T.L., Zhang J.G., Wang L.Q., A Screened Hybrid Density Functional Study on Energetic Complexes: Cobalt, Nickel And Copper Carbohydrazide Perchlorates, J. Hazard. Mater., 2010, 179(1-3), 21-27.
  • [48] Sun Y.H., Zhang T.L., Zhang J.G., Yang L., Qiao X.J., Decomposition Kinetics of Manganese Tris(Carbohydrazide) Perchlorate (MnCP) Derived from the Filament Control Voltage of the T-Jump/FTIR Spectroscopy, Int. J. Therm. Sci., 2006, 45, 814-818.
  • [49] Talawar M.B., Agrawal A.P., Chhabra J.S., Asthana S.N., Studies on Lead-free Initiators: Synthesis, Characterization and Performance Evaluation of Transition Metal Complexes of Carbohydrazide, J. Hazard. Mater., 2004, 113(1-3), 57-65.
  • [50] Zhang T.L., Wei Z.R., Lu C.H., Zhang J.G., Research on the Primary Explosive GTG, Explosive Materials, 1999, 28(3), 16-19.
  • [51] Li L.M., Yang A.M., Zhang T.L., Zhang J.G., Qiao X.J., Studies on Plain Detonator of GTG Primary Explosive, Explosive Materials, 2004, 33(4), 16-20.
  • [52] Sa G., Cao W.J., Shu B.Y., Application of GTG Primary Explosive to Industrial Detonator, Explosive Materials, 2001, 30(1), 15-19.
  • [53] Sun Y.H., Zhang T.L., Zhang J.G., Qiao X.J., Yang L., Flash Pyrolysis Study of Zinc Carbohydrazide Perchlorate Using T-jump/FTIR Spectroscopy, Combust. Flame, 2006, 145, 643-646.
  • [54] Liu R., Qi S.Y., Zhang T.L., Zhou Z.N., Yang L., Zhang J.G., Morphological Control of Zinc Tricarbohydrazide Perchlorate Crystals: Theoretical and Experimental Study, Chinese Sci. Bull., 2013, 58(16), 1892-1896.
  • [55] Huang H.S., Zhang T.L., Zhang J.G., Wang L.Q., Density Functional Theoretical Study of Transition Metal Carbohydrazide Perchlorate Complexes, Chem. Phys. Lett., 2010, 487(4-6), 200-203.
  • [56] Zhang Z.G., Zhang J.G., Zhang T.L., Yang Y.M., Preparation Technique and Explosive Properties of [Zn(CHZ)3](ClO4)2, Chin. J. Energ. Mater. (Hanneng Cailiao), 2001, 9(2), 49-52.
  • [57] Dixon W.J., Mood A.M., The Statistical Sign Test, J. Am. Stat. Assoc., 1946, 41(236), 557-566.
  • [58] Fogelzang A.E., Sinditskii V.P., Egorshev V., Serushkin V.V., Effect of Structure of Energetic Materials on Burning Rate, in Decomposition, Combustion, and Detonation Chemistry of Energetic Materials, MRS Proceedings, 1995, 418, 151-161.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d286148-0f0c-476e-b7df-cf9e2594288e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.